Sul Ademi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757011/publications.pdf

Version: 2024-02-01

623734 794594 34 717 14 19 h-index citations g-index papers 34 34 34 497 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Sensorless Closed-Loop Voltage and Frequency Control of Stand-Alone DFIGs Introducing Direct Flux-Vector Control. IEEE Transactions on Industrial Electronics, 2020, 67, 6078-6088.	7.9	15
2	Influence of Pole-Pair Combinations on the Characteristics of the Brushless Doubly Fed Induction Generator. IEEE Transactions on Energy Conversion, 2020, 35, 1151-1159.	5.2	22
3	Sensorless Control of Doubly-Fed Reluctance Machines for Wind Energy Conversion Systems. , 2020, ,		O
4	Sensorless variable speed operation of doublyâ€fed reluctance wind generators. IET Renewable Power Generation, 2020, 14, 2810-2819.	3.1	3
5	Nonlinear H-infinity control for switched reluctance machines. Nonlinear Engineering, 2019, 9, 14-27.	2.7	3
6	Brushless Doubly Fed Machine Magnetic Field Distribution Characteristics and Their Impact on the Analysis and Design. IEEE Transactions on Energy Conversion, 2019, 34, 2180-2188.	5.2	15
7	Research on Direct Power Control for Open-Winding Brushless Doubly-Fed Reluctance Wind Power Generator with Fault-Tolerant Strategy. , 2019, , .		1
8	Voltage-Dip Analysis of Brushless Doubly Fed Induction Generator Using Reduced T-Model. IEEE Transactions on Industrial Electronics, 2019, 66, 7510-7519.	7.9	9
9	Optimized Power Error Comparison Strategy for Direct Power Control of the Open-Winding Brushless Doubly Fed Wind Power Generator. IEEE Transactions on Sustainable Energy, 2019, 10, 2005-2014.	8.8	14
10	Controller Strategy for Open-Winding Brushless Doubly Fed Wind Power Generator With Common Mode Voltage Elimination. IEEE Transactions on Industrial Electronics, 2019, 66, 1098-1107.	7.9	20
11	Sensorless Control of Brushless Doubly Fed Induction Machine Using a Control Winding Current MRAS Observer. IEEE Transactions on Industrial Electronics, 2019, 66, 728-738.	7.9	44
12	Super-Twisting Sliding Mode Direct Power Control of a Brushless Doubly Fed Induction Generator. IEEE Transactions on Industrial Electronics, 2018, 65, 9147-9156.	7.9	121
13	Control of Doubly-Fed Reluctance Machines without a Shaft Position or Speed Sensor. , 2018, , .		4
14	Brushless doubly-fed machines: Opportunities and challenges. Chinese Journal of Electrical Engineering, 2018, 4, 1-17.	3.4	66
15	A novel direct power control for open-winding brushless doubly-fed reluctance generators fed by dual two-level converters using a common DC bus. , 2017, , .		2
16	Flatness-based adaptive fuzzy control of brushless doubly-fed reluctance machines., 2017,,.		1
17	Simulation and practical studies of doubly-fed reluctance drives operation and control., 2017,,.		0
18	Power Factor Control Mechanism for Optimum Efficiency in Wind Generators and Industrial Applications., 2017,, 289-303.		0

#	Article	IF	CITATIONS
19	Parameter independent vector control of brushless Doubly-fed reluctance generators. , 2016, , .		O
20	Encoderless flux vector oriented control of brushless doubly-fed reluctance generators. , 2016, , .		0
21	A novel sensorless speed controller design for doubly-fed reluctance wind turbine generators. Energy Conversion and Management, 2016, 120, 229-237.	9.2	20
22	Direct power control with common mode voltage elimination for open-winding brushless doubly-fed wind power generators. , 2016, , .		0
23	A New Sensorless Speed Control Scheme for Doubly Fed Reluctance Generators. IEEE Transactions on Energy Conversion, 2016, 31, 993-1001.	5.2	55
24	Control of doubly-fed reluctance generators for wind power applications. Renewable Energy, 2016, 85, 171-180.	8.9	29
25	Assessment of Stand-Alone Residential Solar Photovoltaic Application in Sub-Saharan Africa: A Case Study of Gambia. Journal of Renewable Energy, 2015, 2015, 1-10.	3.6	24
26	Control of Brushless Doubly-Fed Reluctance Generators for Wind Energy Conversion Systems. IEEE Transactions on Energy Conversion, 2015, 30, 596-604.	5.2	83
27	Comparisons of Vector Control Algorithms for Doubly-Fed Reluctance Wind Generators. , 2015, , 85-99.		2
28	Vector Control Methods for Brushless Doubly Fed Reluctance Machines. IEEE Transactions on Industrial Electronics, 2015, 62, 96-104.	7.9	95
29	Theoretical and experimental evaluation of vector control for doubly-fed reluctance generators. , 2014, , .		4
30	Robust vector controllers for brushless doubly-fed wind turbine generators. , 2014, , .		3
31	High-efficiency control of brushless doubly-fed machines for wind turbines and pump drives. Energy Conversion and Management, 2014, 81, 120-132.	9.2	38
32	Maximum torque per inverter ampere control of brushless doubly-fed reluctance generators for wind turbines. , 2014, , .		5
33	Control of Emerging Brushless Doubly-Fed Reluctance Wind Turbine Generators. Green Energy and Technology, 2014, , 395-411.	0.6	12
34	Vector control strategies for brushless doubly-fed reluctance wind generators. , 2012, , .		7