
## Sul Ademi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7757011/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Super-Twisting Sliding Mode Direct Power Control of a Brushless Doubly Fed Induction Generator.<br>IEEE Transactions on Industrial Electronics, 2018, 65, 9147-9156.                                  | 7.9 | 121       |
| 2  | Vector Control Methods for Brushless Doubly Fed Reluctance Machines. IEEE Transactions on<br>Industrial Electronics, 2015, 62, 96-104.                                                                | 7.9 | 95        |
| 3  | Control of Brushless Doubly-Fed Reluctance Generators for Wind Energy Conversion Systems. IEEE<br>Transactions on Energy Conversion, 2015, 30, 596-604.                                               | 5.2 | 83        |
| 4  | Brushless doubly-fed machines: Opportunities and challenges. Chinese Journal of Electrical Engineering, 2018, 4, 1-17.                                                                                | 3.4 | 66        |
| 5  | A New Sensorless Speed Control Scheme for Doubly Fed Reluctance Generators. IEEE Transactions on Energy Conversion, 2016, 31, 993-1001.                                                               | 5.2 | 55        |
| 6  | Sensorless Control of Brushless Doubly Fed Induction Machine Using a Control Winding Current MRAS Observer. IEEE Transactions on Industrial Electronics, 2019, 66, 728-738.                           | 7.9 | 44        |
| 7  | High-efficiency control of brushless doubly-fed machines for wind turbines and pump drives. Energy Conversion and Management, 2014, 81, 120-132.                                                      | 9.2 | 38        |
| 8  | Control of doubly-fed reluctance generators for wind power applications. Renewable Energy, 2016, 85, 171-180.                                                                                         | 8.9 | 29        |
| 9  | Assessment of Stand-Alone Residential Solar Photovoltaic Application in Sub-Saharan Africa: A Case<br>Study of Gambia. Journal of Renewable Energy, 2015, 2015, 1-10.                                 | 3.6 | 24        |
| 10 | Influence of Pole-Pair Combinations on the Characteristics of the Brushless Doubly Fed Induction Generator. IEEE Transactions on Energy Conversion, 2020, 35, 1151-1159.                              | 5.2 | 22        |
| 11 | A novel sensorless speed controller design for doubly-fed reluctance wind turbine generators.<br>Energy Conversion and Management, 2016, 120, 229-237.                                                | 9.2 | 20        |
| 12 | Controller Strategy for Open-Winding Brushless Doubly Fed Wind Power Generator With Common<br>Mode Voltage Elimination. IEEE Transactions on Industrial Electronics, 2019, 66, 1098-1107.             | 7.9 | 20        |
| 13 | Brushless Doubly Fed Machine Magnetic Field Distribution Characteristics and Their Impact on the Analysis and Design. IEEE Transactions on Energy Conversion, 2019, 34, 2180-2188.                    | 5.2 | 15        |
| 14 | Sensorless Closed-Loop Voltage and Frequency Control of Stand-Alone DFIGs Introducing Direct Flux-Vector Control. IEEE Transactions on Industrial Electronics, 2020, 67, 6078-6088.                   | 7.9 | 15        |
| 15 | Optimized Power Error Comparison Strategy for Direct Power Control of the Open-Winding<br>Brushless Doubly Fed Wind Power Generator. IEEE Transactions on Sustainable Energy, 2019, 10,<br>2005-2014. | 8.8 | 14        |
| 16 | Control of Emerging Brushless Doubly-Fed Reluctance Wind Turbine Generators. Green Energy and Technology, 2014, , 395-411.                                                                            | 0.6 | 12        |
| 17 | Voltage-Dip Analysis of Brushless Doubly Fed Induction Generator Using Reduced T-Model. IEEE<br>Transactions on Industrial Electronics, 2019, 66, 7510-7519.                                          | 7.9 | 9         |
|    |                                                                                                                                                                                                       |     |           |

18 Vector control strategies for brushless doubly-fed reluctance wind generators. , 2012, , .

Sul Ademi

| #  | Article                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Maximum torque per inverter ampere control of brushless doubly-fed reluctance generators for wind turbines. , 2014, , .                                      |     | 5         |
| 20 | Theoretical and experimental evaluation of vector control for doubly-fed reluctance generators. ,<br>2014, , .                                               |     | 4         |
| 21 | Control of Doubly-Fed Reluctance Machines without a Shaft Position or Speed Sensor. , 2018, , .                                                              |     | 4         |
| 22 | Robust vector controllers for brushless doubly-fed wind turbine generators. , 2014, , .                                                                      |     | 3         |
| 23 | Nonlinear H-infinity control for switched reluctance machines. Nonlinear Engineering, 2019, 9, 14-27.                                                        | 2.7 | 3         |
| 24 | Sensorless variable speed operation of doublyâ€fed reluctance wind generators. IET Renewable Power<br>Generation, 2020, 14, 2810-2819.                       | 3.1 | 3         |
| 25 | Comparisons of Vector Control Algorithms for Doubly-Fed Reluctance Wind Generators. , 2015, , 85-99.                                                         |     | 2         |
| 26 | A novel direct power control for open-winding brushless doubly-fed reluctance generators fed by dual two-level converters using a common DC bus. , 2017, , . |     | 2         |
| 27 | Flatness-based adaptive fuzzy control of brushless doubly-fed reluctance machines. , 2017, , .                                                               |     | 1         |
| 28 | Research on Direct Power Control for Open-Winding Brushless Doubly-Fed Reluctance Wind Power<br>Generator with Fault-Tolerant Strategy. , 2019, , .          |     | 1         |
| 29 | Parameter independent vector control of brushless Doubly-fed reluctance generators. , 2016, , .                                                              |     | 0         |
| 30 | Encoderless flux vector oriented control of brushless doubly-fed reluctance generators. , 2016, , .                                                          |     | 0         |
| 31 | Direct power control with common mode voltage elimination for open-winding brushless doubly-fed wind power generators. , 2016, , .                           |     | 0         |
| 32 | Simulation and practical studies of doubly-fed reluctance drives operation and control. , 2017, , .                                                          |     | 0         |
| 33 | Sensorless Control of Doubly-Fed Reluctance Machines for Wind Energy Conversion Systems. , 2020, ,                                                           |     | 0         |
| 34 | Power Factor Control Mechanism for Optimum Efficiency in Wind Generators and Industrial Applications. , 2017, , 289-303.                                     |     | 0         |