
Chu-Chen Chueh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7756996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
2	Additive Enhanced Crystallization of Solutionâ€Processed Perovskite for Highly Efficient Planarâ€Heterojunction Solar Cells. Advanced Materials, 2014, 26, 3748-3754.	11.1	1,344
3	Highâ€Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solutionâ€Processed Copperâ€Doped Nickel Oxide Holeâ€Transporting Layer. Advanced Materials, 2015, 27, 695-701.	11.1	751
4	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
5	Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. Journal of the American Chemical Society, 2014, 136, 3760-3763.	6.6	688
6	Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376, 416-420.	6.0	527
7	Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO ₂ Nanocrystals as the Robust Electronâ€Transporting Layer. Advanced Materials, 2016, 28, 6478-6484.	11.1	447
8	Fluoroâ€Substituted nâ€Type Conjugated Polymers for Additiveâ€Free Allâ€Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71%. Advanced Materials, 2015, 27, 3310-3317.	11.1	421
9	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	6.6	414
10	A Lowâ€Temperature, Solutionâ€Processable, Cuâ€Doped Nickel Oxide Holeâ€Transporting Layer via the Combustion Method for Highâ€Performance Thinâ€Film Perovskite Solar Cells. Advanced Materials, 2015, 27, 7874-7880.	11.1	405
11	Integrated Molecular, Interfacial, and Device Engineering towards Highâ€Performance Nonâ€Fullerene Based Organic Solar Cells. Advanced Materials, 2014, 26, 5708-5714.	11.1	400
12	Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications, 2020, 11, 177.	5.8	360
13	Highâ€Performance Holeâ€Extraction Layer of Sol–Gelâ€Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 12571-12575.	7.2	355
14	Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS Nano, 2014, 8, 10640-10654.	7.3	353
15	Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2â€b]thiopheneâ€based Ladderâ€Type Polymer Leading to Highly Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 6356-6361.	11.1	343
16	Interface Engineering for Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells with Efficiency over 14%. Advanced Materials, 2018, 30, e1802509.	11.1	336
17	Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. ACS Energy Letters, 2016, 1, 757-763.	8.8	317
18	Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance. Advanced Functional Materials, 2016, 26, 2950-2958.	7.8	305

#	Article	IF	CITATIONS
19	Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Bladeâ€Coating. Advanced Energy Materials, 2015, 5, 1401229.	10.2	303
20	Stable Lowâ€Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells. Advanced Materials, 2016, 28, 8990-8997.	11.1	302
21	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	10.2	298
22	Binaryâ€Metal Perovskites Toward Highâ€Performance Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 6454-6460.	11.1	295
23	Highâ€Performance Fully Printable Perovskite Solar Cells via Bladeâ€Coating Technique under the Ambient Condition. Advanced Energy Materials, 2015, 5, 1500328.	10.2	294
24	Roles of Fullereneâ€Based Interlayers in Enhancing the Performance of Organometal Perovskite Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1402321.	10.2	289
25	Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule, 2020, 4, 1248-1262.	11.7	260
26	2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nature Nanotechnology, 2020, 15, 934-940.	15.6	258
27	A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 15246-15251.	6.6	257
28	Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A, 2019, 7, 17079-17095.	5.2	253
29	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. Journal of the American Chemical Society, 2021, 143, 2665-2670.	6.6	245
30	Doping of Fullerenes via Anionâ€Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 4425-4430.	11.1	244
31	Rigidifying Nonplanar Perylene Diimides by Ring Fusion Toward Geometryâ€Tunable Acceptors for Highâ€Performance Fullereneâ€Free Solar Cells. Advanced Materials, 2016, 28, 951-958.	11.1	238
32	Highâ€Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1500486.	10.2	221
33	Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer. Advanced Materials, 2014, 26, 6262-6267.	11.1	206
34	Realizing Efficient Leadâ€Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials, 2018, 30, 1703800.	11.1	198
35	Dopantâ€Free Organic Holeâ€Transporting Material for Efficient and Stable Inverted Allâ€Inorganic and Hybrid Perovskite Solar Cells. Advanced Materials, 2020, 32, e1908011.	11.1	195
36	Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. Nano Letters, 2016, 16, 7739-7747.	4.5	193

#	Article	IF	CITATIONS
37	High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A, 2015, 3, 9098-9102.	5.2	192
38	Inorganic CsPb _{1â^'} <i>_x</i> Sn <i>_x</i> IBr ₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.	10.2	192
39	Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2016, 7, 811-819.	2.1	188
40	Effects of Selfâ€Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem, 2017, 10, 3794-3803.	3.6	185
41	Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy, 2016, 22, 328-337.	8.2	180
42	Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 11833-11839.	6.6	178
43	Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. ACS Applied Materials & amp; Interfaces, 2016, 8, 32068-32076.	4.0	178
44	Highly Efficient Porphyrinâ€Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. Advanced Materials, 2017, 29, 1703980.	11.1	176
45	Polyfluorene Derivatives are Highâ€Performance Organic Holeâ€Transporting Materials for Inorganicâ^'Organic Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2014, 24, 7357-7365.	7.8	172
46	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.	15.6	168
47	Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 2017, 34, 392-398.	8.2	162
48	Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. Journal of Materials Chemistry, 2012, 22, 8574.	6.7	159
49	Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures. Advanced Science, 2019, 6, 1801715.	5.6	159
50	10.4% Power Conversion Efficiency of ITOâ€Free Organic Photovoltaics Through Enhanced Light Trapping Configuration. Advanced Energy Materials, 2015, 5, 1500406.	10.2	154
51	High Performance Volatile Polymeric Memory Devices Based on Novel Triphenylamine-based Polyimides Containing Mono- or Dual-Mediated Phenoxy Linkages. Macromolecules, 2010, 43, 1236-1244.	2.2	153
52	Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry A, 2016, 4, 17939-17945.	5.2	151
53	Synthesis and Memory Device Characteristics of New Sulfur Donor Containing Polyimides. Macromolecules, 2009, 42, 4456-4463.	2.2	148
54	The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, 2015, 3, 9058-9062.	5.2	147

#	Article	IF	CITATIONS
55	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	10.2	141
56	Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. ACS Energy Letters, 2021, 6, 9-15.	8.8	141
57	Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Progress in Polymer Science, 2019, 99, 101175.	11.8	140
58	Lowâ€Temperature Solutionâ€Processed CuCrO ₂ Holeâ€Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702762.	10.2	137
59	SrCl ₂ Derived Perovskite Facilitating a High Efficiency of 16% in Holeâ€Conductorâ€Free Fully Printable Mesoscopic Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606608.	11.1	135
60	Nonvolatile Perovskiteâ€Based Photomemory with a Multilevel Memory Behavior. Advanced Materials, 2017, 29, 1702217.	11.1	133
61	Highly Efficient Inverted Organic Solar Cells Through Material and Interfacial Engineering of Indacenodithieno[3,2â€ <i>b</i>]thiopheneâ€Based Polymers and Devices. Advanced Functional Materials, 2014, 24, 1465-1473.	7.8	132
62	Solutionâ€Processible Highly Conducting Fullerenes. Advanced Materials, 2013, 25, 2457-2461.	11.1	130
63	Optical Design of Transparent Thin Metal Electrodes to Enhance In oupling and Trapping of Light in Flexible Polymer Solar Cells. Advanced Materials, 2012, 24, 6362-6367.	11.1	125
64	Multiâ€Selenopheneâ€Containing Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie - International Edition, 2021, 60, 15935-15943.	7.2	125
65	Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chemical Communications, 2019, 55, 4315-4318.	2.2	121
66	Influence of Molecular Geometry of Perylene Diimide Dimers and Polymers on Bulk Heterojunction Morphology Toward Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 5326-5332.	7.8	119
67	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Advanced Energy Materials, 2014, 4, 1400206.	10.2	118
68	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€īransporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 8999-9003.	7.2	118
69	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 17724-17730.	7.2	118
70	Highâ€Performance Planarâ€Heterojunction Solar Cells Based on Ternary Halide Largeâ€Bandâ€Gap Perovskites. Advanced Energy Materials, 2015, 5, 1400960.	10.2	117
71	A 0D/3D Heterostructured Allâ€Inorganic Halide Perovskite Solar Cell with High Performance and Enhanced Phase Stability. Advanced Materials, 2019, 31, e1904735.	11.1	117
72	Highâ€Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping. Advanced Energy Materials, 2013, 3, 666-673.	10.2	116

#	Article	IF	CITATIONS
73	Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics. ACS Energy Letters, 2017, 2, 2531-2539.	8.8	116
74	Synthesis of New Indolocarbazole-Acceptor Alternating Conjugated Copolymers and Their Applications to Thin Film Transistors and Photovoltaic Cells. Macromolecules, 2009, 42, 1897-1905.	2.2	115
75	4â€ <i>Tert</i> â€butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700683.	10.2	115
76	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	10.2	114
77	Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. Chemical Science, 2018, 9, 2698-2704.	3.7	109
78	A Lowâ€Temperature, Solution Processable Tin Oxide Electronâ€Transporting Layer Prepared by the Dualâ€Fuel Combustion Method for Efficient Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600122.	1.9	107
79	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107
80	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183.	11.7	105
81	Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF ₄ ^{â^'} Anion Substitutions. Advanced Functional Materials, 2019, 29, 1808833.	7.8	104
82	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} 1 ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	7.8	103
83	A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 10786-10793.	11.1	102
84	Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy and Environmental Science, 2015, 8, 1712-1718.	15.6	101
85	Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery. Journal of Materials Chemistry A, 2018, 6, 20546-20563.	5.2	96
86	Vertical Orientated Dion–Jacobson Quasiâ€⊋D Perovskite Film with Improved Photovoltaic Performance and Stability. Small Methods, 2020, 4, 1900831.	4.6	96
87	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	2.2	94
88	Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH ₃ NH ₃ Pb _{<i>x</i>} Sn _{1–<i>x</i>} Br ₃ Single Crystals. Chemistry of Materials, 2018, 30, 1556-1565.	3.2	93
89	Uniform Luminous Perovskite Nanofibers with Colorâ€Tunability and Improved Stability Prepared by Oneâ€5tep Core/Shell Electrospinning. Small, 2018, 14, e1704379.	5.2	93
90	A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency. Advanced Energy Materials, 2018, 8, 1800529.	10.2	92

#	Article	IF	CITATIONS
91	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	18.7	91
92	Facile synthesis of a 56ï€-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chemical Communications, 2011, 47, 10082.	2.2	89
93	Microcavityâ€Enhanced Lightâ€Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Advanced Materials, 2014, 26, 6778-6784.	11.1	89
94	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	10.2	89
95	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
96	Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11448-11459.	5.2	88
97	Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. Advanced Science, 2016, 3, 1600027.	5.6	86
98	A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells. Small Methods, 2020, 4, 2000687.	4.6	86
99	Selenium-Containing Organic Photovoltaic Materials. Accounts of Chemical Research, 2021, 54, 3906-3916.	7.6	83
100	Mesoporous SnO ₂ single crystals as an effective electron collector for perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 18265-18268.	1.3	82
101	Highly crystalline Zn ₂ SnO ₄ nanoparticles as efficient electron-transporting layers toward stable inverted and flexible conventional perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15294-15301.	5.2	82
102	5,14-Diaryldiindeno[2,1- <i>f</i> :1′,2′ <i>-j</i>]picene: A New Stable [7]Helicene with a Partial Biradical Character. Journal of the American Chemical Society, 2018, 140, 14357-14366.	6.6	81
103	Hybrid Perovskiteâ€Organic Flexible Tandem Solar Cell Enabling Highly Efficient Electrocatalysis Overall Water Splitting. Advanced Energy Materials, 2020, 10, 2000361.	10.2	79
104	Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 164, 47-55.	3.0	75
105	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	10.2	74
106	Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. Nano Energy, 2016, 30, 417-425.	8.2	71
107	Composition Engineering of Allâ€Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2020, 30, 2001764.	7.8	69
108	Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics. Nano Energy, 2020, 78, 105377.	8.2	68

#	Article	IF	CITATIONS
109	Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021, 82, 105701.	8.2	68
110	A PCBM Electron Transport Layer Containing Small Amounts of Dual Polymer Additives that Enables Enhanced Perovskite Solar Cell Performance. Advanced Science, 2016, 3, 1500353.	5.6	67
111	A Redoxâ€Based Resistive Switching Memory Device Consisting of Organic–Inorganic Hybrid Perovskite/Polymer Composite Thin Film. Advanced Electronic Materials, 2017, 3, 1700344.	2.6	67
112	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	10.2	67
113	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	7.2	66
114	Enhanced Moisture Stability of Cesium ontaining Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	1.9	65
115	Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 17343-17349.	2.8	64
116	Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability. ACS Applied Materials & Interfaces, 2016, 8, 14513-14520.	4.0	64
117	Strong Photocurrent Enhancements in Highly Efficient Flexible Organic Solar Cells by Adopting a Microcavity Configuration. Advanced Materials, 2014, 26, 3349-3354.	11.1	63
118	Stretchable and Ambient Stable Perovskite/Polymer Luminous Hybrid Nanofibers of Multicolor Fiber Mats and Their White LED Applications. ACS Applied Materials & Interfaces, 2019, 11, 23605-23615.	4.0	63
119	Facile Thiolâ€Ene Thermal Crosslinking Reaction Facilitated Holeâ€Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601165.	10.2	62
120	Modifying Surface Termination of CsPbl ₃ Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2021, 31, 2009515.	7.8	62
121	Enabling High Efficiency of Hydrocarbonâ€Solvent Processed Organic Solar Cells through Balanced Charge Generation and Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 2101768.	10.2	61
122	Technical Challenges and Perspectives for the Commercialization of Solutionâ€Processable Solar Cells. Advanced Materials Technologies, 2021, 6, .	3.0	60
123	Effects of Acceptors on the Electronic and Optoelectronic Properties of Fluoreneâ€Based Donor–Acceptor–Donor Copolymers. Macromolecular Chemistry and Physics, 2007, 208, 1919-1927.	1.1	58
124	Highâ€Performance Inverted Polymer Solar Cells: Device Characterization, Optical Modeling, and Holeâ€Transporting Modifications. Advanced Functional Materials, 2012, 22, 2804-2811.	7.8	58
125	Influence of polymeric electrets on the performance of derived hybrid perovskite-based photo-memory devices. Nanoscale, 2018, 10, 18869-18877.	2.8	57
126	High Mobility Preservation of Near Amorphous Conjugated Polymers in the Stretched States Enabled by Biaxially-Extended Conjugated Side-Chain Design. Chemistry of Materials, 2020, 32, 7370-7382.	3.2	57

8

#	Article	IF	CITATIONS
127	Dopantâ€Free Crossconjugated Holeâ€Transporting Polymers for Highly Efficient Perovskite Solar Cells. Advanced Science, 2020, 7, 1903331.	5.6	55
128	Interface functionalization in inverted perovskite solar cells: From material perspective. , 2022, 1, e9120011.		53
129	High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, 2015, 3, 9128-9132.	5.2	52
130	Optical Enhancement via Electrode Designs for Highâ€Performance Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 321-340.	7.8	52
131	Realization of Intrinsically Stretchable Organic Solar Cells Enabled by Charge-Extraction Layer and Photoactive Material Engineering. ACS Applied Materials & Interfaces, 2018, 10, 21712-21720.	4.0	52
132	Boosting the Performance of Environmentally Friendly Quantum Dotâ€5ensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Advanced Materials, 2019, 31, e1903696.	11.1	51
133	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	10.2	51
134	A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Advances, 2017, 7, 54361-54368.	1.7	51
135	Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 34158-34170.	4.0	50
136	XPS spectra as a tool for studying photochemical and thermal degradation in APbX3 hybrid halide perovskites. Nano Energy, 2021, 79, 105421.	8.2	50
137	Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9, 19778-19787.	5.2	50
138	Navigating Organoâ€Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure–Property Relationships. Small, 2015, 11, 3088-3096.	5.2	49
139	An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy, 2022, 93, 106853.	8.2	49
140	Efficient and Stable Tin Perovskite Solar Cells by Pyridineâ€Functionalized Fullerene with Reduced Interfacial Energy Loss. Advanced Functional Materials, 2022, 32, .	7.8	49
141	Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance. Journal of Materials Chemistry, 2012, 22, 14976.	6.7	48
142	All-conjugated diblock copolymer of poly(3-hexylthiophene)-block-poly(3-phenoxymethylthiophene) for field-effect transistor and photovoltaic applications. Organic Electronics, 2009, 10, 1541-1548.	1.4	47
143	Enhancing efficiency of perovskite solar cells by reducing defects through imidazolium cation incorporation. Materials Today Energy, 2018, 7, 161-168.	2.5	47
144	A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. Journal of Materials Chemistry A, 2017, 5, 10517-10525.	5.2	46

#	Article	IF	CITATIONS
145	Facile Fabrication of Stretchable Touch-Responsive Perovskite Light-Emitting Diodes Using Robust Stretchable Composite Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 14408-14415.	4.0	46
146	Asymmetric Isomer Effects in Benzo[<i>c</i>][1,2,5]thiadiazoleâ€Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials, 2021, 31, 2104369.	7.8	46
147	Enhanced Lightâ€Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for Highâ€Performance ITOâ€Free Flexible Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 567-574.	7.8	44
148	Improving Performance of Perovskite Solar Cells Using [7]Helicenes with Stable Partial Biradical Characters as the Holeâ€Extraction Layers. Advanced Functional Materials, 2019, 29, 1808625.	7.8	44
149	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	5.2	43
150	Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility–Stretchability Property. ACS Applied Materials & Interfaces, 2020, 12, 50648-50659.	4.0	43
151	Interfacial Engineering of Wideâ€Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells. Advanced Functional Materials, 2022, 32, 2107359.	7.8	43
152	Indacenodithieno[3,2-b]thiophene-based broad bandgap polymers for high efficiency polymer solar cells. Polymer Chemistry, 2013, 4, 5220.	1.9	42
153	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	3.2	42
154	High performance nonvolatile transistor memories of pentacene using the electrets of star-branched p-type polymers and their donor–acceptor blends. Journal of Materials Chemistry C, 2014, 2, 1436.	2.7	41
155	Abnormal Current–Voltage Hysteresis Induced by Reverse Bias in Organic–Inorganic Hybrid Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2016, 7, 995-1003.	2.1	41
156	Design rules for the broad application of fast (<1 s) methylamine vapor based, hybrid perovskite post deposition treatments. RSC Advances, 2016, 6, 27475-27484.	1.7	41
157	Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 33014-33027.	4.0	41
158	Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. Journal of Materials Chemistry C, 2021, 9, 2660-2684.	2.7	41
159	Synthesis and properties of new dialkoxyphenylene quinoxalineâ€based donorâ€acceptor conjugated polymers and their applications on thin film transistors and solar cells. Journal of Polymer Science Part A, 2009, 47, 973-985.	2.5	40
160	Close-Packed Colloidal SiO2as a Nanoreactor: Generalized Synthesis of Metal Oxide Mesoporous Single Crystals and Mesocrystals. Chemistry of Materials, 2014, 26, 5700-5709.	3.2	40
161	Hierarchical Dualâ€Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	1.9	40
162	Boosting performance of inverted organic solar cells by using a planar coronene based electron-transporting layer. Nano Energy, 2017, 39, 454-460.	8.2	39

#	Article	IF	CITATIONS
163	Two-Dimensional Cs ₂ Pb(SCN) ₂ Br ₂ -Based Photomemory Devices Showing a Photoinduced Recovery Behavior and an Unusual Fully Optically Driven Memory Behavior. ACS Applied Materials & Interfaces, 2020, 12, 36398-36408.	4.0	39
164	Stable blue perovskite light-emitting diodes achieved by optimization of crystal dimension through zinc bromide addition. Chemical Engineering Journal, 2021, 414, 128774.	6.6	39
165	Improving Photovoltaic Performance Using Perovskite/Surfaceâ€Modified Graphitic Carbon Nitride Heterojunction. Solar Rrl, 2020, 4, 1900413.	3.1	38
166	Interfacial Modification through a Multifunctional Molecule for Inorganic Perovskite Solar Cells with over 18% Efficiency. Solar Rrl, 2020, 4, 2000205.	3.1	38
167	Lowâ€Energyâ€Consumption and Electretâ€Free Photosynaptic Transistor Utilizing Poly(3â€hexylthiophene)â€Based Conjugated Block Copolymers. Advanced Science, 2022, 9, e2105190.	5.6	38
168	Solution-Processable Anion-doped Conjugated Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Applied Materials & amp; Interfaces, 2020, 12, 33968-33978.	4.0	37
169	New thiopheneâ€phenyleneâ€thiophene acceptor random conjugated copolymers for optoelectronic applications. Journal of Polymer Science Part A, 2010, 48, 2351-2360.	2.5	36
170	Multilevel Nonvolatile Flexible Organic Fieldâ€Effect Transistor Memories Employing Polyimide Electrets with Different Chargeâ€Transfer Effects. Macromolecular Rapid Communications, 2014, 35, 1039-1045.	2.0	35
171	Doping Versatile n-Type Organic Semiconductors via Room Temperature Solution-Processable Anionic Dopants. ACS Applied Materials & Interfaces, 2017, 9, 1136-1144.	4.0	35
172	Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics. Journal of Materials Chemistry C, 2020, 8, 873-882.	2.7	35
173	Syntheses of New 3,6 arbazoleâ€Based Donor/Acceptor Conjugated Copolymers for Optoelectronic Device Applications. Macromolecular Chemistry and Physics, 2010, 211, 2017-2025.	1.1	34
174	Bioâ€Based Transparent Conductive Film Consisting of Polyethylene Furanoate and Silver Nanowires for Flexible Optoelectronic Devices. Macromolecular Rapid Communications, 2018, 39, e1800271.	2.0	34
175	Trihydrazine Dihydriodideâ€Assisted Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900285.	3.1	34
176	Interlayer Modification Using Eco-friendly Glucose-Based Natural Polymers in Polymer Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 14621-14630.	3.2	33
177	Mechanically robust, stretchable organic solar cells via buckle-on-elastomer strategy. Organic Electronics, 2018, 53, 339-345.	1.4	32
178	Intrinsically Stretchable Nanostructured Silver Electrodes for Realizing Efficient Strain Sensors and Stretchable Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2017, 9, 27853-27862.	4.0	31
179	Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules, 2021, 54, 7388-7399.	2.2	31
180	Synthesis, properties, and field effect transistor characteristics of new thiopheneâ€{1,2,5]thiadiazolo[3,4â€g]quinoxalineâ€thiopheneâ€based conjugated polymers. Journal of Polymer Science Part A, 2008, 46, 6305-6316.	2.5	30

#	Article	IF	CITATIONS
181	Improving performance of Cs-based perovskite light-emitting diodes by dual additives consisting of polar polymer and n-type small molecule. Organic Electronics, 2019, 67, 294-301.	1.4	30
182	Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate. Chemical Engineering Journal, 2021, 405, 126996.	6.6	30
183	A Roomâ€Temperature Processable PDIâ€Based Electronâ€Transporting Layer for Enhanced Performance in PDIâ€Based Nonâ€Fullerene Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600476.	1.9	27
184	Intrinsically stretchable, solution-processable functional poly(siloxane-imide)s for stretchable resistive memory applications. Polymer Chemistry, 2018, 9, 5145-5154.	1.9	27
185	Engineering of perovskite light-emitting diodes based on quasi-2D perovskites formed by diamine cations. Organic Electronics, 2019, 75, 105400.	1.4	27
186	Improved Ambient‧table Perovskite Solar Cells Enabled by a Hybrid Polymeric Electronâ€Transporting Layer. ChemSusChem, 2016, 9, 2586-2591.	3.6	26
187	Realizing a new class of hybrid organic–inorganic multifunctional perovskite. Journal of Materials Chemistry A, 2017, 5, 10640-10650.	5.2	26
188	Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss. ACS Applied Materials & Interfaces, 2020, 12, 21633-21640.	4.0	26
189	Surface engineered CoP/Co ₃ O ₄ heterojunction for high-performance bi-functional water splitting electro-catalysis. Nanoscale, 2021, 13, 20281-20288.	2.8	26
190	Enhancing Longâ€Term Thermal Stability of Nonâ€Fullerene Organic Solar Cells Using Selfâ€Assembly Amphiphilic Dendritic Block Copolymer Interlayers. Advanced Functional Materials, 2021, 31, 2005753.	7.8	25
191	Comprehensive Non-volatile Photo-programming Transistor Memory via a Dual-Functional Perovskite-Based Floating Gate. ACS Applied Materials & Interfaces, 2021, 13, 20417-20426.	4.0	25
192	Improving Performance of Nonvolatile Perovskiteâ€Based Photomemory by Size Restrain of Perovskites Nanocrystals in the Hybrid Floating Gate. Advanced Electronic Materials, 2020, 6, 2000458.	2.6	24
193	Synthesis of New Fluorene-Indolocarbazole Alternating Copolymers for Light-Emitting Diodes and Field Effect Transistors. Polymer Journal, 2008, 40, 249-255.	1.3	23
194	Enhanced Nearâ€Infrared Photoresponse of Inverted Perovskite Solar Cells Through Rational Design of Bulkâ€Heterojunction Electronâ€Transporting Layers. Advanced Science, 2019, 6, 1901714.	5.6	23
195	Improving the Performance and Stability of Perovskite Light-Emitting Diodes by a Polymeric Nanothick Interlayer-Assisted Grain Control Process. ACS Omega, 2020, 5, 8972-8981.	1.6	23
196	Lowâ€Temperature Processed Carbon Electrodeâ€Based Inorganic Perovskite Solar Cells with Enhanced Photovoltaic Performance and Stability. Energy and Environmental Materials, 2021, 4, 95-102.	7.3	23
197	Freestanding 2D NiFe Metal–Organic Framework Nanosheets: Facilitating Proton Transfer via Organic Ligands for Efficient Oxygen Evolution Reaction. Small, 2022, 18, .	5.2	23
198	New Pâ€ŧype of poly(4â€methoxyâ€ŧriphenylamine)s derived by coupling reactions: Synthesis, electrochromic behaviors, and hole mobility. Journal of Polymer Science Part A, 2009, 47, 4037-4050.	2.5	22

#	Article	IF	CITATIONS
199	Stable, color-tunable 2D SCN-based perovskites: revealing the critical influence of an asymmetric pseudo-halide on constituent ions. Nanoscale, 2019, 11, 2608-2616.	2.8	22
200	Investigation of the Mobility–Stretchability Relationship of Ester-Substituted Polythiophene Derivatives. Macromolecules, 2020, 53, 4968-4981.	2.2	22
201	A Simple Dithieno[3,2â€b:2′,3′â€d]pyrrolâ€Rhodanine Molecular Third Component Enables Over 16.7% Efficiency and Stable Organic Solar Cells. Small, 2021, 17, e2007746.	5.2	22
202	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	5.0	21
203	Feasibility study of atmospheric-pressure dielectric barrier discharge treatment on CH3NH3PbI3 films for inverted planar perovskite solar cells. Electrochimica Acta, 2019, 293, 1-7.	2.6	20
204	Recent progress of anion-based 2D perovskites with different halide substitutions. Journal of Materials Chemistry C, 2020, 8, 4294-4302.	2.7	20
205	Inorganicâ€Cation Pseudohalide 2D Cs ₂ Pb(SCN) ₂ Br ₂ Perovskite Single Crystal. Advanced Materials, 2022, 34, e2104782.	11.1	20
206	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€īransporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 9145-9149.	1.6	19
207	Development of Block Copolymers with Poly(3-hexylthiophene) Segments as Compatibilizers in Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12083-12092.	4.0	19
208	Photon-Induced Reshaping in Perovskite Material Yields of Nanocrystals with Accurate Control of Size and Morphology. Journal of Physical Chemistry Letters, 2019, 10, 4149-4156.	2.1	18
209	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
210	Realizing Stable Highâ€Performance and Lowâ€Energyâ€Loss Ternary Photovoltaics through Judicious Selection of the Third Component. Solar Rrl, 2021, 5, 2100450.	3.1	18
211	Interface Engineering for Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells with Enhanced Power Conversion Efficiency over 11%. Energy Technology, 2021, 9, 2100562.	1.8	18
212	Tetrathienodibenzocarbazole Based Donor–Acceptor Type Wide Band-Gap Copolymers for Polymer Solar Cell Applications. Macromolecules, 2014, 47, 7407-7415.	2.2	17
213	Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance. Journal of Materials Chemistry A, 2016, 4, 961-968.	5.2	16
214	Low-Cost Hole-Transporting Materials Based on Carbohelicene for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 20051-20059.	4.0	16
215	Syntheses, properties, and fieldâ€effect transistors of small band gap quinoxaline―and thienopyrazineâ€vinylene/ethynylene conjugated polymers. Journal of Polymer Science Part A, 2010, 48, 74-81.	2.5	15
216	Semi-conjugated acceptor-based polyimides as electrets for nonvolatile transistor memory devices. Polymer Chemistry, 2014, 5, 6834-6846.	1.9	15

#	Article	IF	CITATIONS
217	High-performance ternary polymer solar cells using wide-bandgap biaxially extended octithiophene-based conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 6920-6928.	2.7	15
218	XPS evidence of degradation mechanism in CH ₃ NH ₃ PbI ₃ hybrid perovskite. Journal of Physics Condensed Matter, 2020, 32, 095501.	0.7	15
219	A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative. Journal of Materials Chemistry A, 2015, 3, 6929-6934.	5.2	14
220	Structure–Mobility Relationship of Benzodithiophene-Based Conjugated Polymers with Varied Biaxially Extended Conjugated Side Chains. Industrial & Engineering Chemistry Research, 2020, 59, 9105-9115.	1.8	14
221	Improving Mobility–Stretchability Properties of Polythiophene Derivatives through Ester-Substituted, Biaxially Extended Conjugated Side Chains. ACS Applied Polymer Materials, 2021, 3, 1628-1637.	2.0	14
222	Biaxially-extended side-chain engineering of benzodithiophene-based conjugated polymers and their applications in polymer solar cells. Organic Electronics, 2020, 79, 105630.	1.4	13
223	An Efficient and Reversible Battery Anode Electrode Derived from a Lead-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 9669-9682.	2.5	13
224	Efficient thick film non-fullerene organic solar cells enabled by using a strong temperature-dependent aggregative wide bandgap polymer. Chemical Engineering Journal, 2021, 405, 127033.	6.6	12
225	Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. Journal of Physical Chemistry Letters, 2021, 12, 4638-4657.	2.1	12
226	A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chemical Engineering Journal, 2021, 422, 130112.	6.6	12
227	Realizing Nonvolatile Photomemories with Multilevel Memory Behaviors Using Water-Processable Polymer Dots-Based Hybrid Floating Gates. ACS Applied Electronic Materials, 2021, 3, 1708-1718.	2.0	11
228	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	1.6	11
229	Biaxially extended side-chain conjugation of benzodithiophene-based polymer dots for superior photocatalytic stability under visible-light irradiation. Journal of Environmental Chemical Engineering, 2022, 10, 106927.	3.3	11
230	Enhanced crystallization and performance of formamidinium lead triiodide perovskite solar cells through PbI2-SrCl2 modulation. Materials Today Energy, 2018, 7, 239-245.	2.5	10
231	Alcohol-Soluble Cross-Linked Poly(<i>n</i> BA) _{<i>n</i>} - <i>b</i> Poly(NVTri) _{<i>m</i>} Block Copolymer and Its Applications in Organic Photovoltaic Cells for Improved Stability. ACS Applied Materials & Description Interfaces, 2018, 10, 44741-44750.	4.0	10
232	An asymmetric 2,3-fluoranthene imide building block for regioregular semiconductors with aggregation-induced emission properties. Chemical Science, 2022, 13, 996-1002.	3.7	10
233	Investigating the backbone conformation and configuration effects for donor–acceptor conjugated polymers with ladder-type structures synthesized through Aldol polycondensation. Journal of Materials Chemistry C, 2021, 9, 9473-9483.	2.7	9
234	Naphthalene-diimide-based all-conjugated block copolymer as an effective compatibilizer to improve the performance and thermal stability of all-polymer solar cells. Materials Chemistry Frontiers, 2021, 5, 7216-7227.	3.2	9

#	Article	IF	CITATIONS
235	Infrared proximity sensor using organic light-emitting diode with quantum dots converter. Organic Electronics, 2012, 13, 2312-2318.	1.4	8
236	Intrinsically stretchable naphthalenediimide–bithiophene conjugated statistical terpolymers using branched conjugation break spacers for field–effect transistors. Polymer Chemistry, 2021, 12, 6167-6178.	1.9	8
237	Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. Small, 2022, 18, e2107834.	5.2	8
238	Photovoltaic performance of ladder-type indacenodithieno[3,2-b]thiophene-based polymers with alkoxyphenyl side chains. RSC Advances, 2015, 5, 26680-26685.	1.7	7
239	Perovskite Solar Cells: Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures (Adv. Sci. 5/2019). Advanced Science, 2019, 6, 1970030.	5.6	7
240	Strain-insensitive naphthalene-diimide-based conjugated polymers through sequential regularity control. Materials Chemistry Frontiers, 2022, 6, 891-900.	3.2	7
241	Polymer synaptic transistors from memory to neuromorphic computing. Materials Chemistry and Physics, 2022, 287, 126263.	2.0	7
242	High hole mobility from thiophene-thienopyrazine copolymer based thin film transistors. Journal of Polymer Research, 2009, 16, 239-244.	1.2	6
243	Multi-state memristive behavior in a light-emitting electrochemical cell. Journal of Materials Chemistry C, 2017, 5, 11421-11428.	2.7	6
244	Exploitation of Thermoresponsive Switching Organic Field-Effect Transistors. ACS Omega, 2019, 4, 22082-22088.	1.6	6
245	Recent advance in renewable materials and green processes for optoelectronic applications. Materials Today Sustainability, 2021, 11-12, 100057.	1.9	6
246	Multiâ€Selenopheneâ€Containing Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie, 2021, 133, 16071-16079.	1.6	6
247	Enhancing the Performance of Quasi-2D Perovskite Light-Emitting Diodes Using Natural Cyclic Molecules with Distinct Phase Regulation Behaviors. ACS Applied Materials & Interfaces, 2022, 14, 9587-9596.	4.0	6
248	Pyrene-Incorporated Side Chain in π-Conjugated Polymers for Non-Volatile Transistor-Type Memory Devices with Improved Stretchability. ACS Applied Polymer Materials, 2021, 3, 2109-2119.	2.0	5
249	Reducing the side-chain influences of isoindigo-based polymer donors by backbone fluorination in photovoltaic applications. Dyes and Pigments, 2022, 199, 110038.	2.0	5
250	Impact of the segment ratio on a donor–acceptor all-conjugated block copolymer in single-component organic solar cells. Nanoscale, 2022, 14, 5472-5481.	2.8	5
251	Perovskites: Navigating Organo-Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure-Property Relationships (Small 26/2015). Small, 2015, 11, 3087-3087.	5.2	4
252	Solutionâ€Processable, Transparent Polyimide for Highâ€Performance Highâ€ <i>k</i> Nanocomposite: Synthesis, Characterization, and Dielectric Applications in Transistors. Asian Journal of Organic Chemistry, 2018, 7, 2263-2270.	1.3	4

#	Article	IF	CITATIONS
253	Cross-Linking of Poly(arylenebutadiynylene)s and Its Effect on Charge Carrier Mobilities in Thin-Film Transistors. Macromolecules, 2021, 54, 4351-4362.	2.2	4
254	Coil–rod–coil triblock copolymers synthesized by macromolecular clicking and their compatibilizer effects in all-polymer solar cells. Journal of Materials Chemistry C, 2021, 10, 346-359.	2.7	4
255	Possible interfacial ion/charge accumulation in thin-film perovskite/fullerene surfactant planar heterojunction solar cells. Journal Physics D: Applied Physics, 2018, 51, 504001.	1.3	3
256	Improving the performance of all-inorganic perovskite light-emitting diodes through using polymeric interlayers with a pendant design. Materials Chemistry Frontiers, 2021, 5, 7199-7207.	3.2	3
257	Thiol-end-functionalized Regioregular Poly(3-hexylthiophene) for PbS Quantum Dot Dispersions. ACS Applied Polymer Materials, 2021, 3, 4450-4459.	2.0	3
258	Electrospun Nanofibers: Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning (Small 22/2018). Small, 2018, 14, 1870103.	5.2	2
259	Exploring the effect of the spacer structure in the heterocyclic ring-fused isoindigo-based conjugated polymer on the charge-transporting property. Journal of Polymer Research, 2021, 28, 1.	1.2	2
260	Hybridization of an n-type semiconducting polymer with PbS quantum dots and their photovoltaic investigation. Polymer Journal, 2022, 54, 323-333.	1.3	2
261	Interface and Nanostructural Engineering of Low-cost, Efficient and Stable Perovskite Solar Cells. Materials Research Society Symposia Proceedings, 2015, 1771, 171-179.	0.1	1
262	Conjugated polysquaraines synthesized by polycondensation: Physical, optical, and charge transport properties. Dyes and Pigments, 2020, 175, 108162.	2.0	1
263	Influence of Oxygen Ion Migration from Substrates on Photochemical Degradation of CH3NH3PbI3 Hybrid Perovskite. Energies, 2021, 14, 5062.	1.6	1
264	Inorganicâ€Cation Pseudohalide 2D Cs ₂ Pb(SCN) ₂ Br ₂ Perovskite Single Crystal (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	11.1	0
265	Phenalene—A New Ring-Locked Vinyl Bridge for Nonfullerene Acceptors With Enhanced Chemical and Photochemical Stabilities. Frontiers in Electronic Materials, 2022, 2, .	1.6	0