David F Watson

List of Publications by Citations

Source: https://exaly.com/author-pdf/7756926/david-f-watson-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65
papers

2,541
citations

26
h-index

9-index

69
ext. papers

2,738
ext. citations

7.2
avg, IF

L-index

#	Paper	IF	Citations
65	Electron injection at dye-sensitized semiconductor electrodes. <i>Annual Review of Physical Chemistry</i> , 2005 , 56, 119-56	15.7	218
64	Cation effects in nanocrystalline solar cells. <i>Coordination Chemistry Reviews</i> , 2004 , 248, 1391-1406	23.2	188
63	Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO2 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3139-3149	3.8	172
62	Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum DotBubstrate Architectures. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2299-2309	6.4	132
61	Thin-Film Molecular Materials Based on Tetrametallic S quares Nanoscale Porosity and Size-Selective Guest Transport Characteristics. <i>Journal of the American Chemical Society</i> , 1999 , 121, 557	- 5 6 3 1	132
60	Optimizing the Photocurrent Efficiency of Dye-Sensitized Solar Cells through the Controlled Aggregation of Chalcogenoxanthylium Dyes on Nanocrystalline Titania Films. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13057-13061	3.8	117
59	Theoretical solar-to-electrical energy-conversion efficiencies of perylene-porphyrin light-harvesting arrays. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25430-40	3.4	108
58	Chalcogenide perovskites han emerging class of ionic semiconductors. <i>Nano Energy</i> , 2016 , 22, 129-135	17.1	104
57	Excited-State Electron Transfer from CdS Quantum Dots to TiO2 Nanoparticles via Molecular Linkers with Phenylene Bridges. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18643-18651	3.8	85
56	Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2. Journal of Physical Chemistry B, 2004 , 108, 11680-11688	3.4	85
55	Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces. <i>Langmuir</i> , 2007 , 23, 3432-9	4	65
54	Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage. <i>Langmuir</i> , 2007 , 23, 10924-8	4	62
53	Aggregation-Induced Increase of the Quantum Yield of Electron Injection from Chalcogenorhodamine Dyes to TiO2. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6010-6018	3.8	61
52	Insights into Dye-Sensitization of Planar TiO2: Evidence for Involvement of a Protonated Surface State. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 10971-10973	3.4	60
51	Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	58
50	Influence of surface-attachment functionality on the aggregation, persistence, and electron-transfer reactivity of chalcogenorhodamine dyes on TiO2. <i>Langmuir</i> , 2012 , 28, 7071-82	4	53
49	Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: influence of molecular linkers on electronic properties and interfacial electron transfer. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2011 , 3, 4242-53	9.5	49

48	Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications. <i>Chemical Physics Letters</i> , 2011 , 515, 254-257	2.5	47
47	Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr3) perovskite nanoplatelets. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8810-8818	7.1	46
46	Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. <i>Nano Energy</i> , 2020 , 68, 104317	17.1	35
45	From seconds to femtoseconds: solar hydrogen production and transient absorption of chalcogenorhodamine dyes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7740-50	16.4	34
44	Selenorhodamine Dye-Sensitized Solar Cells: Influence of Structure and Surface-Anchoring Mode on Aggregation, Persistence, and Photoelectrochemical Performance. <i>Langmuir</i> , 2016 , 32, 1521-32	4	33
43	Relating structure and photoelectrochemical properties: electron injection by structurally and theoretically characterized transition metal-doped phenanthroline-polyoxotitanate nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 15792-5	3.6	28
42	Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots. <i>Environmental Science & Environmental Scienc</i>	10.3	28
41	Study on the effects of humic and fulvic acids on quantum dot nanoparticles using capillary electrophoresis with laser-induced fluorescence detection. <i>Environmental Science & Environmental Science </i>	10.3	27
40	Femtosecond Pump P robe Spectroscopy of Trinuclear Transition Metal Mixed-Valence Complexes. Journal of Physical Chemistry A, 2004 , 108, 3261-3267	2.8	27
39	Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2013 , 5, 8649-54	9.5	25
38	Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 119-28	9.3	25
37	Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence. <i>Biomacromolecules</i> , 2017 , 18, 562-567	6.9	24
36	Photochemically Triggered Assembly of Composite Nanomaterials through the Photodimerization of Adsorbed Anthracene Derivatives. <i>Chemistry of Materials</i> , 2010 , 22, 294-304	9.6	24
35	Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS/CdS Quantum-Dot Heterostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 43728-43740	9.5	24
34	Designing catalysts for water splitting based on electronic structure considerations. <i>Electronic Structure</i> , 2020 , 2, 023001	2.6	21
33	Hole Extraction by Design in Photocatalytic Architectures Interfacing CdSe Quantum Dots with Topochemically Stabilized Tin Vanadium Oxide. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17	7163 :4 7	7174
32	Ti-Alloying of BaZrS Chalcogenide Perovskite for Photovoltaics. <i>ACS Omega</i> , 2020 , 5, 18579-18583	3.9	20
31	The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation. <i>Accounts of Chemical Research</i> , 2019 , 52, 645-655	24.3	20

30	Directional Charge Transfer Mediated by Mid-Gap States: A Transient Absorption Spectroscopy Study of CdSe Quantum Dot/即b0.33V2O5 Heterostructures. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 5221-5232	3.8	19
29	Influence of solvation and the structure of adsorbates on the kinetics and mechanism of dimerization-induced compositional changes of mixed monolayers on TiO(2). <i>Langmuir</i> , 2009 , 25, 12217	-28	19
28	Machine Learning-Directed Navigation of Synthetic Design Space: A Statistical Learning Approach to Controlling the Synthesis of Perovskite Halide Nanoplatelets in the Quantum-Confined Regime. <i>Chemistry of Materials</i> , 2019 , 31, 3281-3292	9.6	18
27	Integrating Pb0.33V2O5 Nanowires with CdSe Quantum Dots: Toward Nanoscale Heterostructures with Tunable Interfacial Energetic Offsets for Charge Transfer. <i>Chemistry of Materials</i> , 2015 , 27, 2468-2479	9.6	17
26	Synthesis, Characterization, and Photochemistry of a Dinuclear Cyanide-Bridged Iron(II)-Platinum(IV) Mixed-Valence Compound and Its Implications for the Corresponding Iron(II)-Platinum(IV)-Iron(II) Complex. <i>Inorganic Chemistry</i> , 1999 , 38, 2941-2946	5.1	17
25	Linker-assisted attachment of CdSe quantum dots to TiO2: Time- and concentration-dependent adsorption, agglomeration, and sensitized photocurrent. <i>Langmuir</i> , 2014 , 30, 13293-300	4	16
24	Effects of surface-anchoring mode and aggregation state on electron injection from chalcogenorhodamine dyes to titanium dioxide. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2013 , 264, 18-25	4.7	15
23	Quantum dots exhibit less bioaccumulation than free cadmium and selenium in the earthworm Eisenia andrei. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1288-94	3.8	15
22	Probing the Energetic Distribution of Injected Electrons at Quantum DotlinkerliO2 Interfaces. Journal of Physical Chemistry C, 2012 , 116, 19215-19224	3.8	13
21	Aminoalkanoic Acids as Alternatives to Mercaptoalkanoic Acids for the Linker-Assisted Attachment of Quantum Dots to TiO2. <i>Langmuir</i> , 2016 , 32, 9206-15	4	12
20	Influence of Complex-Formation Equilibria on the Temporal Persistence of Cysteinate-Functionalized CdSe Nanocrystals in Water. <i>Chemistry of Materials</i> , 2011 , 23, 3546-3555	9.6	12
19	Excited-state electronic coupling and photoinduced multiple electron transfer in two related ligand-bridged hexanuclear mixed-valence compounds. <i>Inorganic Chemistry</i> , 2002 , 41, 4389-95	5.1	12
18	Influence of solvation and the persistence of adsorbed linkers on the attachment of CdSe quantum dots to TiO2 via linker-assisted assembly. <i>Langmuir</i> , 2012 , 28, 15598-605	4	11
17	TiO2-catalyzed photodegradation of porphyrins: mechanistic studies and application in monolayer photolithography. <i>Langmuir</i> , 2009 , 25, 5398-403	4	10
16	The effects of electronic coupling and solvent broadening on the intervalent electron transfer of a centrosymmetric mixed-valence complex. <i>Coordination Chemistry Reviews</i> , 2001 , 211, 177-194	23.2	10
15	Temporal evolution of the composition of mixed monolayers on TiO2 surfaces: evidence for a dimerization-induced chelate effect. <i>Langmuir</i> , 2008 , 24, 5249-52	4	9
14	Programming Interfacial Energetic Offsets and Charge Transfer in Pb0.33V2O5/Quantum-Dot Heterostructures: Tuning Valence-Band Edges to Overlap with Midgap States. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 28992-29001	3.8	9
13	Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. Journal of Hazardous Materials, 2011 , 196, 302-10	12.8	8

LIST OF PUBLICATIONS

Influence of dispersion forces and ordering on the compositions of mixed monolayers of alkanoic acids on nanocrystalline TiO2 films. <i>Langmuir</i> , 2013 , 29, 13797-807	4	7	
Photochemical image generation in a cyanogel system synthesized from tetrachloropalladate(II) and the trimetallic mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-): consideration of photochemical and dark mechanistic pathways of Prussian blue formation.	5.1	7	
Raman Excitation Profiles with Self-Consistent Excited-State Displacements [] <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10909-10914	3.4	6	
Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 27737-27748	3.8	5	
Photoinduced electron transfer from quantum dots to TiO2: elucidating the involvement of excitonic and surface states. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20466-75	3.6	5	
Synthesis and photoelectrochemical performance of chalcogenopyrylium monomethine dyes bearing phosphonate/phosphonic acid substituents. <i>Journal of Organic Chemistry</i> , 2013 , 78, 8885-91	4.2	4	
Type-II heterostructures of ⊞O nanowires interfaced with cadmium chalcogenide quantum dots: Programmable energetic offsets, ultrafast charge transfer, and photocatalytic hydrogen evolution. <i>Journal of Chemical Physics</i> , 2019 , 151, 224702	3.9	3	
Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 30980-30991	9.5	2	
Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures. <i>Chemistry of Materials</i> ,	9.6	1	
Influence of donor-to-acceptor ratio on excited-state electron transfer within covalently tethered CdSe/CdTe quantum dot colloidal heterostructures <i>Journal of Chemical Physics</i> , 2022 , 156, 054706	3.9	О	
ease/eare qualitatin ade contoladi hecci osci accares sodi haco, enemica i hysics, edel e, iso, os in od			
Interfacial Photoannealing: The Light Driven Alteration of the Surface-Binding Geometry of a Mixed-Valence Complex Capable of Multielectron Charge Transfer on Colloidal TiO2\(\text{IJournal of Physical Chemistry B, }\) 2000 , 104, 10940-10948	3.4		
	Photochemical image generation in a cyanogel system synthesized from tetrachloropalladate(II) and the trimetallic mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-): consideration of photochemical and dark mechanistic pathways of Prussian blue formation. Raman Excitation Profiles with Self-Consistent Excited-State Displacements[]Journal of Physical Chemistry B, 2000, 104, 10909-10914 Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures. Journal of Physical Chemistry C, 2015, 119, 27737-27748 Photoinduced electron transfer from quantum dots to TiO2: elucidating the involvement of excitonic and surface states. Physical Chemistry Chemical Physics, 2016, 18, 20466-75 Synthesis and photoelectrochemical performance of chalcogenopyrylium monomethine dyes bearing phosphonate/phosphonic acid substituents. Journal of Organic Chemistry, 2013, 78, 8885-91 Type-II heterostructures of EVO nanowires interfaced with cadmium chalcogenide quantum dots: Programmable energetic offsets, ultrafast charge transfer, and photocatalytic hydrogen evolution. Journal of Chemical Physics, 2019, 151, 224702 Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems. ACS Applied Materials & Materia	Acids on nanocrystalline TiO2 films. Langmuir, 2013, 29, 13797-807 Photochemical image generation in a cyanogel system synthesized from tetrachloropalladate(II) and the trimetallic mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4): consideration of photochemical and dark mechanistic pathways of Prussian blue formation. Raman Excitation Profiles with Self-Consistent Excited-State Displacements[Journal of Physical Chemistry B, 2000, 104, 10909-10914 Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures. Journal of Physical Chemistry C, 2015, 119, 27737-27748 Photoinduced electron transfer from quantum dots to TiO2: elucidating the involvement of excitonic and surface states. Physical Chemistry Chemical Physics, 2016, 18, 20466-75 Synthesis and photoelectrochemical performance of chalcogenopyrylium monomethine dyes bearing phosphonate/phosphonic acid substituents. Journal of Organic Chemistry, 2013, 78, 8885-91 Type-II heterostructures of EVO nanowires interfaced with cadmium chalcogenide quantum dots: Programmable energetic offsets, ultrafast charge transfer, and photocatalytic hydrogen evolution. Journal of Chemical Physics, 2019, 151, 224702 Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems. ACS Applied Materials & Amp; Interfaces, 2021, 13, 30980-30991 Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures. Chemistry of Materials, Influence of donor-to-acceptor ratio on excited-state electron transfer within covalently tethered Influence of donor-to-acceptor ratio on excited-state electron transfer within covalently tethered	acids on nanocrystalline TiO2 films. Langmuir, 2013, 29, 13797-807 Photochemical image generation in a cyanogel system synthesized from tetrachloropalladate(II) and the trimetallic mixed-valence complex [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)](4-): consideration of photochemical and dark mechanistic pathways of Prussian blue formation. Raman Excitation Profiles with Self-Consistent Excited-State Displacements[Journal of Physical Chemistry B, 2000, 104, 10909-10914 Excited-State Charge Transfer within Covalently Linked Quantum Dot Heterostructures. Journal of Physical Chemistry C, 2015, 119, 27737-27748 Photoinduced electron transfer from quantum dots to TiO2: elucidating the involvement of excitonic and surface states. Physical Chemistry Chemical Physics, 2016, 18, 20466-75 Synthesis and photoelectrochemical performance of chalcogenopyrylium monomethine dyes bearing phosphonate/phosphonic acid substituents. Journal of Organic Chemistry, 2013, 78, 8885-91 Type-II heterostructures of B/O nanowires interfaced with cadmium chalcogenide quantum dots: Programmable energetic offsets, ultrafast charge transfer, and photocatalytic hydrogen evolution. Journal of Chemical Physics, 2019, 151, 224702 Excited-State Charge Transfer and Extended Charge Separation within Covalently Tethered Type-II CdSe/CdTe Quantum Dot Heterostructures: Colloidal and Multilayered Systems. ACS Applied Materials & Bamp; Interfaces, 2021, 13, 30980-30991 Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures. Chemistry of Materials, Influence of donor-to-acceptor ratio on excited-state electron transfer within covalently tethered