List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7756536/publications.pdf Version: 2024-02-01

IAN FELLEN

#	Article	IF	CITATIONS
1	Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. Journal of Materials Chemistry B, 2021, 9, 8718-8738.	2.9	14
2	In memory of Professor Sung Wan Kim. Journal of Controlled Release, 2020, 321, 773-774.	4.8	0
3	The triangle, in memory of Prof. Sung Wan Kim. Journal of Controlled Release, 2020, 328, 962-969.	4.8	0
4	Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules, 2020, 21, 2966-2982.	2.6	26
5	Folated pH-degradable nanogels for the simultaneous delivery of docetaxel and an IDO1-inhibitor in enhancing cancer chemo-immunotherapy. Biomaterials Science, 2019, 7, 2749-2758.	2.6	33
6	Reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane) Tj ETQqO 0 0 negative breast tumor in vivo. Journal of Materials Chemistry B, 2018, 6, 3040-3047.	rgBT /Ove 2.9	rlock 10 Tf 5 27
7	Dual-targeted nanomedicines for enhanced tumor treatment. Nano Today, 2018, 18, 65-85.	6.2	90
8	Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of Controlled Release, 2018, 278, 1-8.	4.8	92
9	Peptide-decorated polymeric nanomedicines for precision cancer therapy. Journal of Controlled Release, 2018, 290, 11-27.	4.8	63
10	Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opinion on Drug Delivery, 2018, 15, 703-716.	2.4	40
11	Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. Journal of Controlled Release, 2017, 250, 9-19.	4.8	32
12	cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 35651-35663.	4.0	48
13	In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene) Tj ETQq1 1 0.784314 rg	gBT /Overlo 2.6	ock 10 Tf 50
14	Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers. Macromolecular Bioscience, 2016, 16, 619-626.	2.1	10
15	cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release, 2016, 233, 29-38.	4.8	121
16	Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of Controlled Release, 2016, 244, 229-239.	4.8	54
17	Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. Journal of Controlled Release, 2015, 210, 125-133.	4.8	84
18	Biodegradable glycopolymer-b-poly(Îμ-caprolactone) block copolymer micelles: versatile construction, tailored lactose functionality, and hepatoma-targeted drug delivery. Journal of Materials Chemistry B, 2015, 3, 2308-2317.	2.9	41

#	Article	IF	CITATIONS
19	Enzymatically and Reductively Degradable α-Amino Acid-Based Poly(ester amide)s: Synthesis, Cell Compatibility, and Intracellular Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 597-605.	2.6	51
20	Vision, launch and early days of Journal of Controlled Release. Journal of Controlled Release, 2014, 190, 1-2.	4.8	1
21	Glyco-Nanoparticles with Sheddable Saccharide Shells: A Unique and Potent Platform for Hepatoma-Targeting Delivery of Anticancer Drugs. Biomacromolecules, 2014, 15, 900-907.	2.6	98
22	Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release, 2014, 190, 254-273.	4.8	732
23	Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 2014, 9, 385-398.	0.8	69
24	Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 2014, 190, 398-414.	4.8	142
25	Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of Controlled Release, 2013, 169, 171-179.	4.8	336
26	In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.	2.6	108
27	Functional Poly(ε-caprolactone)s via Copolymerization of ε-Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles. Macromolecules, 2013, 46, 699-707.	2.2	90
28	Conference Scene: From innovative polymers to advanced nanomedicine: key challenges, recent progress and future perspectives. Nanomedicine, 2013, 8, 177-180.	1.7	82
29	Stereocomplexed 8-armed poly(ethylene glycol)–poly(lactide) star block copolymer hydrogels: Gelation mechanism, mechanical properties and degradation behavior. Polymer, 2012, 53, 2809-2817.	1.8	51
30	Poly(ethylene glycol)–poly(<scp>L</scp> ″actide) star block copolymer hydrogels crosslinked by metal–ligand coordination. Journal of Polymer Science Part A, 2012, 50, 1783-1791.	2.5	34
31	In Situ Forming Poly(ethylene glycol)―Poly(<scp>L</scp> ″actide) Hydrogels via Michael Addition: Mechanical Properties, Degradation, and Protein Release. Macromolecular Chemistry and Physics, 2012, 213, 766-775.	1.1	17
32	Synthesis, Morphology, and Properties of Segmented Poly(ether amide)s with Uniform Oxalamide-Based Hard Segments. Macromolecules, 2012, 45, 3948-3961.	2.2	52
33	Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 2012, 33, 1281-1290.	5.7	488
34	Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials, 2012, 33, 3164-3174.	5.7	79
35	The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials, 2012, 33, 3651-3661.	5.7	76
36	Unprecedented Access to Functional Biodegradable Polymers and Coatings. Macromolecules, 2011, 44, 6009-6016.	2.2	88

#	Article	IF	CITATIONS
37	Single site catalysts for stereoselective ring-opening polymerization of lactides. Polymer Chemistry, 2011, 2, 520-527.	1.9	355
38	Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.	4.8	1,187
39	Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. Journal of Controlled Release, 2011, 152, 186-195.	4.8	127
40	The First Symposium on Innovative Polymers for Controlled Delivery, September 14–17, 2010, Suzhou, China. Journal of Controlled Release, 2011, 152, 1.	4.8	15
41	Resorbable elastomeric networks prepared by photocrosslinking of high-molecular-weight poly(trimethylene carbonate) with photoinitiators and poly(trimethylene carbonate) macromers as crosslinking aids. Acta Biomaterialia, 2011, 7, 1939-1948.	4.1	43
42	Novel injectable biodegradable glycol chitosanâ€based hydrogels crosslinked by Michaelâ€ŧype addition reaction with oligo(acryloyl carbonate)â€ <i>b</i> â€poly(ethylene glycol)â€ <i>b</i> â€oligo(acryloyl) Tj ETQq0 0 () ægBT /Ov	e rdo ck 10 Tf
43	Enhanced Collagen Type IV Based Differentiation of Embryonic Stem Cells Towards Flkâ€1 Expressing Vascular Progenitors by the Wnt/β atenin Synergist QS11. Macromolecular Symposia, 2011, 309-310, 236-243.	0.4	1
44	Injectable Hydrogels by Enzymatic Co rosslinking of Dextran and Hyaluronic Acid Tyramine Conjugates. Macromolecular Symposia, 2011, 309-310, 213-221.	0.4	24
45	Dynamic Culturing of Smooth Muscle Cells in Tubular Poly(Trimethylene Carbonate) Scaffolds for Vascular Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 381-387.	1.6	53
46	Dual bio-responsive gene delivery via reducible poly(amido amine) and survivin-inducible plasmid DNA. Biotechnology Letters, 2010, 32, 755-764.	1.1	11
47	Rapid photo-crosslinking of fumaric acid monoethyl ester-functionalized poly(trimethylene) Tj ETQq1 1 0.784314	rgBT /Ove	erlgçk 10 Tf
48	Rapid gelation of injectable hydrogels based on hyaluronic acid and poly(ethylene glycol) via Michael-type addition. Journal of Controlled Release, 2010, 148, e41-e43.	4.8	10
49	Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene) Tj ETQq1 1 0.784	4314 rgBT 4.8	Överlock 1 154
50	Validation of human periodontal ligamentâ€derived cells as a reliable source for cytotherapeutic use. Journal of Clinical Periodontology, 2010, 37, 1088-1099.	2.3	172
51	A Newly Developed Chemically Crosslinked Dextran–Poly(Ethylene Glycol) Hydrogel for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 565-573.	1.6	56
52	Enzymatically Crosslinked Dextran-Tyramine Hydrogels as Injectable Scaffolds for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 2429-2440.	1.6	122
53	Influence of Amide versus Ester Linkages on the Properties of Eight-Armed PEG-PLA Star Block Copolymer Hydrogels. Biomacromolecules, 2010, 11, 224-232.	2.6	81
54	Self-Aggregation of Gel Forming PEG-PLA Star Block Copolymers in Water. Langmuir, 2010, 26, 12890-12896.	1.6	28

#	Article	IF	CITATIONS
55	In memory of Jorge Heller. Journal of Controlled Release, 2009, 139, 173.	4.8	3
56	AB ₂ Functional Polyesters via Ring Opening Polymerization: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2009, 210, 689-697.	1.1	18
57	Creep-resistant elastomeric networks prepared by photocrosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers. Acta Biomaterialia, 2009, 5, 1543-1551.	4.1	37
58	Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Acta Biomaterialia, 2009, 5, 3281-3294.	4.1	36
59	Redoxâ€initiated poly(methyl methacrylate) emulsion polymerizations stabilized with block copolymers based on methoxyâ€poly(ethylene glycol), εâ€caprolactone, and linoleic acid. Journal of Polymer Science Part A, 2009, 47, 4234-4244.	2.5	10
60	Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30, 2544-2551.	5.7	426
61	Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules, 2009, 10, 197-209.	2.6	1,037
62	Poly(amido amine)s as Gene Delivery Vectors: Effects of Quaternary Nicotinamide Moieties in the Side Chains. ChemMedChem, 2008, 3, 478-486.	1.6	35
63	Mechanical properties of single electrospun collagen type I fibers. Biomaterials, 2008, 29, 955-962.	5.7	249
64	Bioreducible poly(amido amine)s with oligoamine side chains: Synthesis, characterization, and structural effects on gene delivery. Journal of Controlled Release, 2008, 126, 166-174.	4.8	156
65	Novel poly(amido amine)s with bioreducible disulfide linkages in their diamino-units: Structure effects and in vitro gene transfer properties. Journal of Controlled Release, 2008, 130, 38-45.	4.8	82
66	Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils. Biophysical Journal, 2008, 94, 2204-2211.	0.2	194
67	Thermoâ€Responsive Hydrogels Based on Branched Poly(<scp>L</scp> â€lactide)â€poly(ethylene glycol) Copolymers. Macromolecular Symposia, 2008, 272, 13-27.	0.4	14
68	Novel Bioreducible Poly(amido amine)s for Highly Efficient Gene Delivery. Bioconjugate Chemistry, 2007, 18, 138-145.	1.8	283
69	Novel in Situ Forming, Degradable Dextran Hydrogels by Michael Addition Chemistry:Â Synthesis, Rheology, and Degradation. Macromolecules, 2007, 40, 1165-1173.	2.2	183
70	Rapidly in Situ Forming Biodegradable Robust Hydrogels by Combining Stereocomplexation and Photopolymerization. Journal of the American Chemical Society, 2007, 129, 9918-9926.	6.6	146
71	Micromechanical bending of single collagen fibrils using atomic force microscopy. Journal of Biomedical Materials Research - Part A, 2007, 82A, 160-168.	2.1	123
72	Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1176-1183.	2.1	27

#	Article	IF	CITATIONS
73	Poly(ferrocenylsilane)â€ <i>block</i> â€Polylactide Block Copolymers. Macromolecular Rapid Communications, 2007, 28, 2125-2130.	2.0	9
74	Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 2007, 28, 2791-2800.	5.7	360
75	Reducible poly(amido ethylenimine) directed to enhance RNA interference. Biomaterials, 2007, 28, 1912-1917.	5.7	169
76	Ring-opening polymerization of substituted É›-caprolactones with a chiral (salen) AlOiPr complex. Journal of Polymer Science Part A, 2007, 45, 429-436.	2.5	45
77	Reducible poly(amido ethylenediamine) for hypoxia-inducible VEGF delivery. Journal of Controlled Release, 2007, 118, 254-261.	4.8	69
78	In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. Journal of Controlled Release, 2007, 119, 320-327.	4.8	74
79	In-Situ Formation of Biodegradable Hydrogels by Stereocomplexation of PEGâ~'(PLLA)8 and PEGâ~'(PDLA)8 Star Block Copolymers. Biomacromolecules, 2006, 7, 2790-2795.	2.6	157
80	Oligo(trimethylene carbonate)-Based Supramolecular Biomaterials. Macromolecules, 2006, 39, 8763-8771.	2.2	90
81	The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials, 2006, 27, 1741-1748.	5.7	377
82	Biological characterisation of vascular grafts cultured in a bioreactor. Biomaterials, 2006, 27, 2390-2397.	5.7	75
83	Reducible Poly(amido ethylenimine)s Designed for Triggered Intracellular Gene Delivery. Bioconjugate Chemistry, 2006, 17, 1233-1240.	1.8	214
84	Physical characterization of vascular grafts cultured in a bioreactor. Biomaterials, 2006, 27, 2380-2389.	5.7	73
85	Poly(trimethylene carbonate) and monomethoxy poly(ethylene glycol)-block-poly(trimethylene) Tj ETQq1 1 0.78 Release, 2006, 111, 263-270.	4314 rgBT 4.8	- /Overlock 10 74
86	Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene) Tj ETQq0 0 0 rgBT /6	Overlock 1 4.8	0 Ţ <u>f</u> 50 222 T
87	Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: Synthesis and in vitro gene transfer properties. Journal of Controlled Release, 2006, 116, 130-137.	4.8	175
88	A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. Journal of Controlled Release, 2005, 109, 317-329.	4.8	141
89	Stereocomplex Mediated Gelation of PEG-(PLA)2 and PEG-(PLA)8 Block Copolymers. Macromolecular Symposia, 2005, 224, 119-132.	0.4	65
90	Low Molecular Weight Linear Polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine Triblock Copolymers:Â Synthesis, Characterization, and in Vitro Gene Transfer Properties. Biomacromolecules, 2005, 6, 3440-3448.	2.6	152

#	Article	IF	CITATIONS
91	Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Biotechnology and Applied Biochemistry, 2004, 39, 141.	1.4	105
92	Triblock Copolymers Based on 1,3-Trimethylene Carbonate and Lactide as Biodegradable Thermoplastic Elastomers. Macromolecular Chemistry and Physics, 2004, 205, 867-875.	1.1	137
93	Crystal Structure and Morphology of Poly(l-lactide-b-d-lactide) Diblock Copolymers. Macromolecules, 2004, 37, 8641-8646.	2.2	68
94	Single-Site Calcium Initiators for the Controlled Ring-Opening Polymerization of Lactides and Lactones. Polymer Bulletin, 2003, 51, 175-182.	1.7	70
95	The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. Journal of Biomedical Materials Research Part B, 2003, 66B, 559-566.	3.0	114
96	Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. Journal of Biomedical Materials Research Part B, 2003, 67B, 732-740.	3.0	110
97	Influence of Catalyst and Polymerization Conditions on the Properties of 1,3-Trimethylene Carbonate and -Caprolactone Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 747-754.	1.1	37
98	Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 2003, 24, 1937-1947.	5.7	385
99	Determination of the Stereoselectivity Factor for an Asymmetric Enantiomer-Differentiating Polymerization:Â A Revisit. Macromolecules, 2003, 36, 8198-8200.	2.2	4
100	Biodegradable Polymersomes. Macromolecules, 2003, 36, 3004-3006.	2.2	221
101	Preparation of Porous Poly(É>-caprolactone) Structures. Macromolecular Rapid Communications, 2002, 23, 247-252.	2.0	35
102	Synthesis and aqueous phase behavior of thermoresponsive biodegradable poly(D,L-3-methylglycolide)-block-poly(ethylene glycol)-block-poly(D,L-3-methylglycolide) triblock copolymers. Macromolecular Chemistry and Physics, 2002, 203, 1797-1803.	1.1	63
103	In Vitro Degradation of Trimethylene Carbonate Based (Co)polymers. Macromolecular Bioscience, 2002, 2, 411-419.	2.1	105
104	Improvement of the mechanical properties of poly(D,L-lactide) by orientation. Polymer International, 2002, 51, 845-851.	1.6	73
105	Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior. Polymer, 2001, 42, 9335-9345.	1.8	154
106	Proliferation of endothelial cells on surface-immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor. , 1999, 44, 330-340.		55
107	Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion. , 1999, 47, 279-291.		30
108	Polymerization of ethylene oxide using yttrium isopropoxide. Macromolecular Chemistry and Physics, 1996, 197, 3623-3629.	1.1	5

#	Article	IF	CITATIONS
109	Effect of fibronectin on the binding of antithrombin III to immobilized heparin. , 1996, 30, 95-100.		26
110	Interaction of antithrombin III with surface-immobilized albumin—heparin conjugates. Journal of Biomedical Materials Research Part B, 1995, 29, 1317-1329.	3.0	15
111	Glycine/Glycolic acid based copolymers. Journal of Polymer Science Part A, 1994, 32, 1063-1069.	2.5	45
112	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 465-470.	1.1	12
113	Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules, 1993, 26, 2496-2500.	2.2	1,003
114	Release of proteins via ion exchange from albumin-heparin microspheres. Journal of Controlled Release, 1992, 22, 83-93.	4.8	27
115	Release of macromolecules from albumin-heparin microspheres. International Journal of Pharmaceutics, 1992, 79, 191-198.	2.6	15
116	Molecular separation by thermosensitive hydrogel membranes. Journal of Membrane Science, 1991, 64, 283-294.	4.1	227
117	Preparation and characterization of microspheres of albumin-heparin conjugates. Journal of Colloid and Interface Science, 1991, 143, 501-512.	5.0	13
118	Association of macromolecular prodrugs consisting of adriamycin bound to poly(L-glutamic acid). Die Makromolekulare Chemie, 1991, 192, 2925-2942.	1.1	28
119	Stereo block copolymers of L- and D-lactides. Die Makromolekulare Chemie, 1990, 191, 481-488.	1.1	145
120	Coupling of naltrexone to biodegradable poly(alpha-amino acids). Pharmaceutical Research, 1987, 04, 305-310.	1.7	25
121	Copolymers of D,L-lactic acid and glycine. Die Makromolekulare Chemie Rapid Communications, 1986, 7, 193-198.	1.1	58
122	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1985, 6, 9-14.	1.1	73
123	Self-regulating insulin delivery systems I. Synthesis and characterization of glycosylated insulin. Journal of Controlled Release, 1984, 1, 57-66.	4.8	92
124	Covalently bound conjugates of albumin and heparin: Synthesis, fractionation and characterization. Thrombosis Research, 1983, 29, 1-13.	0.8	60