
Jeff W M Bulte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7756430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron oxide MR contrast agents for molecular and cellular imaging. NMR in Biomedicine, 2004, 17, 484-499.	2.8	1,404
2	Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology, 2001, 19, 1141-1147.	17.5	1,016
3	Safety and Immunological Effects of Mesenchymal Stem Cell Transplantation in Patients With Multiple Sclerosis and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 1187-94.	4.5	806
4	Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology, 2005, 23, 1407-1413.	17.5	791
5	In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction. Circulation, 2003, 107, 2290-2293.	1.6	696
6	Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents. Radiology, 2003, 228, 480-487.	7.3	650
7	Dynamic Imaging of Allogeneic Mesenchymal Stem Cells Trafficking to Myocardial Infarction. Circulation, 2005, 112, 1451-1461.	1.6	561
8	Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15256-15261.	7.1	545
9	Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive <i>T</i> ₁ Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells. Journal of the American Chemical Society, 2011, 133, 2955-2961.	13.7	491
10	The Interaction of MS-325 with Human Serum Albumin and Its Effect on Proton Relaxation Rates. Journal of the American Chemical Society, 2002, 124, 3152-3162.	13.7	432
11	Fluorine (¹⁹ F) MRS and MRI in biomedicine. NMR in Biomedicine, 2011, 24, 114-129.	2.8	429
12	Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR in Biomedicine, 2004, 17, 513-517.	2.8	413
13	Tracking immune cells in vivo using magnetic resonance imaging. Nature Reviews Immunology, 2013, 13, 755-763.	22.7	399
14	In Vivo MRI Cell Tracking: Clinical Studies. American Journal of Roentgenology, 2009, 193, 314-325.	2.2	388
15	Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biotechnology, 2007, 25, 217-219.	17.5	379
16	Dual-Modality Monitoring of Targeted Intraarterial Delivery of Mesenchymal Stem Cells After Transient Ischemia. Stroke, 2008, 39, 1569-1574.	2.0	371
17	Natural <scp>D</scp> â€glucose as a biodegradable MRI contrast agent for detecting cancer. Magnetic Resonance in Medicine, 2012, 68, 1764-1773.	3.0	295
18	Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magnetic Resonance in Medicine, 2006, 55, 836-847.	3.0	288

#	Article	IF	CITATIONS
19	In Vivo Magnetic Resonance Tracking of Magnetically Labeled Cells after Transplantation. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 899-907.	4.3	286
20	Cellular MR Imaging. Molecular Imaging, 2005, 4, 153535002005051.	1.4	260
21	Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation, 2003, 76, 1123-1130.	1.0	237
22	Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. Journal of Magnetic Resonance Imaging, 1999, 9, 348-352.	3.4	234
23	In Vivo MR Imaging of Intravascularly Injected Magnetically Labeled Mesenchymal Stem Cells in Rat Kidney and Liver. Radiology, 2004, 233, 781-789.	7.3	232
24	Tracking stem cells using magnetic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 343-355.	6.1	224
25	Magnetic resonance–guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nature Medicine, 2007, 13, 986-991.	30.7	220
26	Positive contrast visualization of iron oxideâ€labeled stem cells using inversionâ€recovery with ONâ€resonant water suppression (IRON). Magnetic Resonance in Medicine, 2007, 58, 1072-1077.	3.0	215
27	Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine, 2005, 54, 769-774.	3.0	212
28	111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nuclear Medicine Communications, 2003, 24, 1149-1154.	1.1	202
29	Magnetic Intracellular Labeling of Mammalian Cells by Combining (FDA-Approved) Superparamagnetic Iron Oxide MR Contrast Agents and Commonly Used Transfection Agents. Academic Radiology, 2002, 9, S484-S487.	2.5	200
30	Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magnetic Resonance in Medicine, 2005, 54, 807-812.	3.0	198
31	Sensitive NMR Detection of Cationic-Polymer-Based Gene Delivery Systems Using Saturation Transfer via Proton Exchange. Journal of the American Chemical Society, 2001, 123, 8628-8629.	13.7	196
32	Developing MR reporter genes: promises and pitfalls. NMR in Biomedicine, 2007, 20, 275-290.	2.8	196
33	Improved molecular imaging contrast agent for detection of human thrombus. Magnetic Resonance in Medicine, 2003, 50, 411-416.	3.0	195
34	Synthesis and Characterization of Soluble Iron Oxideâ^'Dendrimer Composites. Chemistry of Materials, 2001, 13, 2201-2209.	6.7	189
35	MRI-detectable pH nanosensors incorporated intoÂhydrogels for inÂvivo sensing of transplanted-cell viability. Nature Materials, 2013, 12, 268-275.	27.5	189
36	New "multicolor―polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magnetic Resonance in Medicine, 2008, 60, 803-812.	3.0	188

#	Article	IF	CITATIONS
37	Monitoring Cell Therapy Using Iron Oxide MR Contrast Agents. Current Pharmaceutical Biotechnology, 2004, 5, 567-584.	1.6	169
38	Preparation of Magnetically Labeled Cells for Cell Tracking by Magnetic Resonance Imaging. Methods in Enzymology, 2004, 386, 275-299.	1.0	164
39	MR tracking of transplanted cells with "positive contrast―using manganese oxide nanoparticles. Magnetic Resonance in Medicine, 2008, 60, 1-7.	3.0	164
40	Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nature Materials, 2019, 18, 1376-1383.	27.5	164
41	Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent. Journal of Magnetic Resonance Imaging, 1994, 4, 497-505.	3.4	162
42	Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: The case of the Shiverer dysmyelinated mouse brain. Magnetic Resonance in Medicine, 2007, 58, 261-269.	3.0	160
43	The relation between brain iron and NMR relaxation times: An invitro study. Magnetic Resonance in Medicine, 1996, 35, 56-61.	3.0	157
44	Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood, 2004, 104, 3410-3413.	1.4	147
45	In vivo "hot spot―MR imaging of neural stem cells using fluorinated nanoparticles. Magnetic Resonance in Medicine, 2008, 60, 1506-1511.	3.0	143
46	Specific MR imaging of human lymphocytes by monoclonal antibodyâ€guided dextranâ€magnetite particles. Magnetic Resonance in Medicine, 1992, 25, 148-157.	3.0	142
47	Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magnetic Resonance in Medicine, 1993, 29, 32-37.	3.0	141
48	MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magnetic Resonance in Medicine, 2003, 50, 201-205.	3.0	140
49	Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications. Advanced Drug Delivery Reviews, 2019, 138, 293-301.	13.7	136
50	MR Evaluation of the Glomerular Homing of Magnetically Labeled Mesenchymal Stem Cells in a Rat Model of Nephropathy. Radiology, 2006, 238, 200-210.	7.3	133
51	Relaxometry and magnetometry of ferritin. Magnetic Resonance in Medicine, 1998, 40, 227-235.	3.0	130
52	Hot spot MRI emerges from the background. Nature Biotechnology, 2005, 23, 945-946.	17.5	130
53	Cell Size and Velocity of Injection are Major Determinants of the Safety of Intracarotid Stem Cell Transplantation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 921-927.	4.3	130
54	Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: Relationship between relaxivities, electrostatic forces, and chemical composition. Magnetic Resonance in Medicine, 2003, 50, 275-282.	3.0	128

#	Article	IF	CITATIONS
55	Imaging of cellular therapies. Advanced Drug Delivery Reviews, 2010, 62, 1080-1093.	13.7	126
56	The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 2013, 34, 5521-5529.	11.4	125
57	Trimodal Gadolinium-Gold Microcapsules Containing Pancreatic Islet Cells Restore Normoglycemia in Diabetic Mice and Can Be Tracked by Using US, CT, and Positive-Contrast MR Imaging. Radiology, 2011, 260, 790-798.	7.3	124
58	Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magnetic Resonance in Medicine, 2003, 49, 998-1005.	3.0	117
59	Quantitative "Hot-Spot―Imaging of Transplanted Stem Cells Using Superparamagnetic Tracers and Magnetic Particle Imaging. Tomography, 2015, 1, 91-97.	1.8	115
60	Noninvasive Detection of Macrophage-Rich Atherosclerotic Plaque in Hyperlipidemic Rabbits Using "Positive Contrast―Magnetic Resonance Imaging. Journal of the American College of Cardiology, 2008, 52, 483-491.	2.8	111
61	Oral Administration of Salecan-Based Hydrogels for Controlled Insulin Delivery. Journal of Agricultural and Food Chemistry, 2018, 66, 10479-10489.	5.2	111
62	MRI Reporter Genes. Journal of Nuclear Medicine, 2008, 49, 1905-1908.	5.0	109
63	Frequency dependence of MR relaxation times II. Iron oxides. Journal of Magnetic Resonance Imaging, 1993, 3, 641-648.	3.4	106
64	Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magnetic Resonance in Medicine, 2006, 55, 203-209.	3.0	106
65	Longâ€ŧerm MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magnetic Resonance in Medicine, 2011, 65, 564-574.	3.0	105
66	In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magnetic Resonance in Medicine, 2012, 67, 1106-1113.	3.0	104
67	Highâ€ŧhroughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media and Molecular Imaging, 2010, 5, 162-170.	0.8	103
68	MRI/SPECT/Fluorescent Triâ€Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model. Advanced Functional Materials, 2015, 25, 1024-1034.	14.9	102
69	Fluorocapsules for Improved Function, Immunoprotection, and Visualization of Cellular Therapeutics with MR, US, and CT Imaging. Radiology, 2011, 258, 182-191.	7.3	100
70	Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magnetic Resonance in Medicine, 2010, 63, 1031-1043.	3.0	99
71	Cellular MR imaging. Molecular Imaging, 2005, 4, 143-64.	1.4	98
72	Imaging of stem cells using MRI. Basic Research in Cardiology, 2008, 103, 105-113.	5.9	97

#	Article	IF	CITATIONS
73	In Vivo Micro-CT Imaging of Human Mesenchymal Stem Cells Labeled with Gold-Poly- <scp>l</scp> -Lysine Nanocomplexes. Advanced Functional Materials, 2017, 27, 1604213.	14.9	95
74	Relaxometry and magnetometry of the MR contrast agent MION-46L. Magnetic Resonance in Medicine, 1999, 42, 379-384.	3.0	94
75	Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent. Journal of Magnetism and Magnetic Materials, 1999, 194, 204-209.	2.3	92
76	Radiopaque Alginate Microcapsules for X-ray Visualization and Immunoprotection of Cellular Therapeutics. Molecular Pharmaceutics, 2006, 3, 531-538.	4.6	91
77	Hepatic hemosiderosis in non-human primates: Quantification of liver iron using different field strengths. Magnetic Resonance in Medicine, 1997, 37, 530-536.	3.0	89
78	Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magnetic Resonance in Medicine, 2007, 57, 164-171.	3.0	89
79	Cell motility of neural stem cells is reduced after SPIOâ€labeling, which is mitigated after exocytosis. Magnetic Resonance in Medicine, 2013, 69, 255-262.	3.0	89
80	In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Experimental Neurology, 2004, 187, 509-516.	4.1	88
81	In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. NeuroImage, 2005, 26, 744-754.	4.2	88
82	Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology, 2018, 289, 604-615.	7.3	87
83	T1 andT2 of ferritin solutions: Effect of loading factor. Magnetic Resonance in Medicine, 1996, 36, 61-65.	3.0	84
84	Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. Journal of Magnetic Resonance Imaging, 1999, 9, 329-335.	3.4	84
85	MR-trackable intramyocardial injection catheter. Magnetic Resonance in Medicine, 2004, 51, 1163-1172.	3.0	84
86	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
87	Magnetovaccination as a Novel Method to Assess and Quantify Dendritic Cell Tumor Antigen Capture and Delivery to Lymph Nodes. Cancer Research, 2009, 69, 3180-3187.	0.9	83
88	Monitoring Enzyme Activity Using a Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent. Journal of the American Chemical Society, 2011, 133, 16326-16329.	13.7	83
89	Use of perfluorocarbon nanoparticles for nonâ€invasive multimodal cell tracking of human pancreatic islets. Contrast Media and Molecular Imaging, 2011, 6, 251-259.	0.8	83
90	Dy-DTPA derivatives as relaxation agents for very high field MRI: The beneficial effect of slow water exchange on the transverse relaxivities. Magnetic Resonance in Medicine, 2002, 47, 1121-1130.	3.0	82

#	Article	IF	CITATIONS
91	Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. International Journal of Cancer, 2006, 120, 978-984.	5.1	82
92	Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 89-94.	3.3	81
93	Transforming Thymidine into a Magnetic Resonance Imaging Probe for Monitoring Gene Expression. Journal of the American Chemical Society, 2013, 135, 1617-1624.	13.7	80
94	Seeing Stem Cells at Work In Vivo. Stem Cell Reviews and Reports, 2014, 10, 127-144.	5.6	79
95	Magnetic resonance imaging of brain iron in health and disease. Journal of the Neurological Sciences, 1995, 134, 19-26.	0.6	78
96	Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: Early histopathological correlation. Journal of Neuroscience Research, 1998, 52, 549-558.	2.9	78
97	Magnetic Resonance Imaging of Ferumoxide-Labeled Mesenchymal Stem Cells Seeded on Collagen Scaffolds—Relevance to Tissue Engineering. Tissue Engineering, 2006, 12, 2765-2775.	4.6	77
98	Synthesis of magnetic resonance–, X-ray– and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nature Protocols, 2011, 6, 1142-1151.	12.0	77
99	Multifunctional Capsuleâ€in apsules for Immunoprotection and Trimodal Imaging. Angewandte Chemie - International Edition, 2011, 50, 2317-2321.	13.8	77
100	Advances in using MRI probes and sensors for <i>in vivo</i> cell tracking as applied to regenerative medicine. DMM Disease Models and Mechanisms, 2015, 8, 323-336.	2.4	77
101	MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Experimental Neurology, 2006, 201, 49-59.	4.1	76
102	Accelerating stem cell trials for Alzheimer's disease. Lancet Neurology, The, 2016, 15, 219-230.	10.2	76
103	Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Theranostics, 2016, 6, 1588-1600.	10.0	74
104	Effect of MOG sensitization on somatosensory evoked potential in Lewis rats. Journal of the Neurological Sciences, 2009, 284, 81-89.	0.6	71
105	Molecular factors that determine Curie spin relaxation in dysprosium complexes. Magnetic Resonance in Medicine, 2001, 46, 917-922.	3.0	70
106	Personalized nanomedicine advancements for stem cell tracking. Advanced Drug Delivery Reviews, 2012, 64, 1488-1507.	13.7	70
107	Single ¹⁹ F Probe for Simultaneous Detection of Multiple Metal Ions Using miCEST MRI. Journal of the American Chemical Society, 2015, 137, 78-81.	13.7	70
108	Comparison of t2 relaxation in blood, brain, and ferritin. Journal of Magnetic Resonance Imaging, 1995, 5, 446-450.	3.4	69

#	Article	IF	CITATIONS
109	Metal Ion Sensing Using Ion Chemical Exchange Saturation Transfer ¹⁹ F Magnetic Resonance Imaging. Journal of the American Chemical Society, 2013, 135, 12164-12167.	13.7	67
110	<i>In vivo</i> tracking of cellular therapeutics using magnetic resonance imaging. Expert Opinion on Biological Therapy, 2009, 9, 293-306.	3.1	65
111	Evoked potential and behavioral outcomes for experimental autoimmune encephalomyelitis in Lewis rats. Neurological Sciences, 2010, 31, 595-601.	1.9	65
112	Magnetic Resonance Imaging of Cell Surface Receptors Using Targeted Contrast Agents. Current Pharmaceutical Biotechnology, 2004, 5, 485-494.	1.6	64
113	Human Protamine-1 as an MRI Reporter Gene Based on Chemical Exchange. ACS Chemical Biology, 2014, 9, 134-138.	3.4	64
114	Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials, 2015, 42, 144-150.	11.4	64
115	Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2346-2358.	4.3	63
116	Magnetoliposomes as Contrast Agents. Methods in Enzymology, 2003, 373, 175-198.	1.0	62
117	Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells. Nature Communications, 2015, 6, 6719.	12.8	62
118	Size-Induced Enhancement of Chemical Exchange Saturation Transfer (CEST) Contrast in Liposomes. Journal of the American Chemical Society, 2008, 130, 5178-5184.	13.7	61
119	Human glial-restricted progenitors survive, proliferate, and preserve electrophysiological function in rats with focal inflammatory spinal cord demyelination. Glia, 2011, 59, 499-510.	4.9	59
120	Monitoring Stem Cell Therapy in Vivo Using Magnetodendrimers as a New Class of Cellular MR Contrast Agents. Academic Radiology, 2002, 9, S332-S335.	2.5	58
121	Noninvasive monitoring of stem cell transfer for muscle disorders. Magnetic Resonance in Medicine, 2004, 51, 273-277.	3.0	58
122	Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds. Journal of Controlled Release, 2011, 156, 239-245.	9.9	58
123	MRI biosensor for protein kinase A encoded by a single synthetic gene. Magnetic Resonance in Medicine, 2012, 68, 1919-1923.	3.0	55
124	Long-Term MRI Cell Tracking after Intraventricular Delivery in a Patient with Global Cerebral Ischemia and Prospects for Magnetic Navigation of Stem Cells within the CSF. PLoS ONE, 2014, 9, e97631.	2.5	55
125	Use of MR Cell Tracking to Evaluate Targeting of Glial Precursor Cells to Inflammatory Tissue by Exploiting the Very Late Antigen-4 Docking Receptor. Radiology, 2012, 265, 175-185.	7.3	52
126	A diaCEST MRI approach for monitoring liposomal accumulation in tumors. Journal of Controlled Release, 2014, 180, 51-59.	9.9	52

#	Article	IF	CITATIONS
127	CEST phase mapping using a length and offset varied saturation (LOVARS) scheme. Magnetic Resonance in Medicine, 2012, 68, 1074-1086.	3.0	51
128	Tagging of T cells with superparamagnetic iron oxide: Uptake kinetics and relaxometry. Academic Radiology, 1996, 3, S301-S303.	2.5	48
129	Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for <italic>in vivo</italic> imaging of stem cells. Journal of Biomedical Optics, 2012, 17, 016004.	2.6	47
130	Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomedicine, 2013, 8, 299-308.	3.3	47
131	Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nature Protocols, 2013, 8, 2380-2391.	12.0	47
132	Frequency dependence of MR relaxation times I. Paramagnetic ions. Journal of Magnetic Resonance Imaging, 1993, 3, 637-640.	3.4	45
133	Conserved fate and function of ferumoxides″abeled neural precursor cells in vitro and in vivo. Journal of Neuroscience Research, 2010, 88, 936-944.	2.9	45
134	In Vivo Imaging of Composite Hydrogel Scaffold Degradation Using CEST MRI and Twoâ€Color NIR Imaging. Advanced Functional Materials, 2019, 29, 1903753.	14.9	45
135	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie - International Edition, 2019, 58, 9871-9875.	13.8	45
136	Dysprosium-DOTA-PAMAM Dendrimers as Macromolecular T2 Contrast Agents. Investigative Radiology, 1998, 33, 841-845.	6.2	45
137	Dextran-magnetite particles: Contrast-enhanced MRI of blood–brain barrier disruption in a rat model. Magnetic Resonance in Medicine, 1992, 23, 215-223.	3.0	44
138	Stem cell profiling by nuclear magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 2006, 56, 666-670.	3.0	44
139	Imaging of pancreatic islet cells. Diabetes/Metabolism Research and Reviews, 2011, 27, 761-766.	4.0	44
140	Tumorâ€specific expression and detection of a CEST reporter gene. Magnetic Resonance in Medicine, 2015, 74, 544-549.	3.0	44
141	Highly efficient magnetic labelling allows MRI tracking of the homing of stem cellâ€derived extracellular vesicles following systemic delivery. Journal of Extracellular Vesicles, 2021, 10, e12054.	12.2	43
142	Direct saturation MRI: Theory and application to imaging brain iron. Magnetic Resonance in Medicine, 2009, 62, 384-393.	3.0	42
143	Magnetic resonance imaging of cells in experimental disease models. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 55, 61-77.	7.5	42
144	Microcapsules with intrinsic barium radiopacity for immunoprotection and X-ray/CT imaging of pancreatic islet cells. Biomaterials, 2012, 33, 4681-4689.	11.4	42

#	Article	IF	CITATIONS
145	Two decades of dendrimers as versatile <scp>MRI</scp> agents: a tale with and without metals. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1496.	6.1	42
146	Structure-Specific Patterns of Neural Stem Cell Engraftment After Transplantation in the Adult Mouse Brain. Human Gene Therapy, 2006, 17, 693-704.	2.7	41
147	Magnetoferritin. Investigative Radiology, 1994, 29, S214-S216.	6.2	40
148	The Role of Noninvasive Cellular Imaging in Developing Cell-Based Therapies for Neurodegenerative Disorders. Neurodegenerative Diseases, 2007, 4, 306-313.	1.4	40
149	Supercharged green fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. Chemical Communications, 2015, 51, 4869-4871.	4.1	40
150	Magnetic nanoparticles as markers for cellular MR imaging. Journal of Magnetism and Magnetic Materials, 2005, 289, 423-427.	2.3	39
151	Noninvasive imaging of infection after treatment with tumorâ€homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. Magnetic Resonance in Medicine, 2013, 70, 1690-1698.	3.0	39
152	Molecular Engineering of Nonmetallic Biosensors for CEST MRI. ACS Chemical Biology, 2015, 10, 1160-1170.	3.4	39
153	In Vivo Imaging of Stem Cells and Beta Cells Using Direct Cell Labeling and Reporter Gene Methods. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1025-1030.	2.4	38
154	Immunomodulation by Transplanted Human Embryonic Stem Cellâ€Đerived Oligodendroglial Progenitors in Experimental Autoimmune Encephalomyelitis. Stem Cells, 2012, 30, 2820-2829.	3.2	38
155	Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Scientific Reports, 2017, 7, 4644.	3.3	38
156	19F spin–lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0–14.1T). Journal of Magnetic Resonance, 2014, 242, 18-22.	2.1	37
157	Fluorine-19 Labeling of Stromal Vascular Fraction Cells for Clinical Imaging Applications. Stem Cells Translational Medicine, 2015, 4, 1472-1481.	3.3	37
158	Diamagnetic chemical exchange saturation transfer (<scp>diaCEST</scp>) liposomes: physicochemical properties and imaging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 111-124.	6.1	36
159	Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. Academic Radiology, 1995, 2, 871-878.	2.5	35
160	Design of Targeted Cardiovascular Molecular Imaging Probes. Journal of Nuclear Medicine, 2010, 51, 3S-17S.	5.0	35
161	Transplanted human glial-restricted progenitors can rescue the survival of dysmyelinated mice independent of the production of mature, compact myelin. Experimental Neurology, 2017, 291, 74-86.	4.1	35
162	Microencapsulated cell tracking. NMR in Biomedicine, 2013, 26, 850-859.	2.8	34

#	Article	IF	CITATIONS
163	Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1779.	6.1	34
164	Feridex-Labeled Mesenchymal Stem Cells: Cellular Differentiation and MR Assessment in a Canine Myocardial Infarction Model. Academic Radiology, 2005, 12, S2-S6.	2.5	33
165	Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magnetic Resonance in Medicine, 2009, 61, 970-974.	3.0	33
166	Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI. NMR in Biomedicine, 2014, 27, 320-331.	2.8	33
167	Characterization of tumor vascular permeability using natural dextrans and CEST MRI. Magnetic Resonance in Medicine, 2018, 79, 1001-1009.	3.0	33
168	Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie - International Edition, 2021, 60, 3923-3927.	13.8	32
169	Multimodality Evaluation of the Viability of Stem Cells Delivered Into Different Zones of Myocardial Infarction. Circulation: Cardiovascular Imaging, 2008, 1, 6-13.	2.6	31
170	X-Ray-Visible Microcapsules Containing Mesenchymal Stem Cells Improve Hind Limb Perfusion in a Rabbit Model of Peripheral Arterial Disease. Stem Cells, 2012, 30, 1286-1296.	3.2	31
171	Intracellular Endosomal Magnetic Labeling of Cells. , 2006, 124, 419-439.		30
172	Automated detection and characterization of SPIOâ€labeled cells and capsules using magnetic field perturbations. Magnetic Resonance in Medicine, 2012, 67, 278-289.	3.0	30
173	MR Monitoring of Minimally Invasive Delivery of Mesenchymal Stem Cells into the Porcine Intervertebral Disc. PLoS ONE, 2013, 8, e74658.	2.5	30
174	In Vivo19F MR Imaging Cell Tracking of Inflammatory Macrophages and Site-specific Development of Colitis-associated Dysplasia. Radiology, 2017, 282, 194-201.	7.3	30
175	An immunocompetent mouse model of human glioblastoma. Oncotarget, 2017, 8, 61072-61082.	1.8	30
176	MPI cell tracking: what can we learn from MRI?. Proceedings of SPIE, 2011, 7965, 79650z.	0.8	29
177	ICVâ€ŧransplanted human glial precursor cells are shortâ€ŀived yet exert immunomodulatory effects in mice with EAE. Glia, 2012, 60, 1117-1129.	4.9	29
178	Stem Cell Therapy for Myelin Diseases. Current Drug Targets, 2005, 6, 3-19.	2.1	28
179	Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: A serial MR imaging study. Magnetic Resonance in Medicine, 2011, 65, 1738-1749.	3.0	28
180	Real-Time MRI Guidance for Reproducible Hyperosmolar Opening of the Blood-Brain Barrier in Mice. Frontiers in Neurology, 2018, 9, 921.	2.4	28

#	Article	IF	CITATIONS
181	Iron uptake by ferritin: NMR relaxometry studies at low iron loads. Journal of Inorganic Biochemistry, 1998, 71, 153-157.	3.5	27
182	T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): Theory and experiment. Academic Radiology, 1998, 5, S137-S140.	2.5	27
183	Multiâ€echo Length and Offset VARied Saturation (MeLOVARS) method for improved CEST imaging. Magnetic Resonance in Medicine, 2015, 73, 488-496.	3.0	27
184	Comment on "Magnetic Resonance Spectroscopy Identifies Neural Progenitor Cells in the Live Human Brain". Science, 2008, 321, 640-640.	12.6	26
185	Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control. Experimental Neurology, 2013, 247, 73-79.	4.1	26
186	Magnetic Nanoparticles as Contrast Agents for MR Imaging. , 1997, , 527-543.		26
187	Microscopic R2* mapping of reduced brain iron in the Belgrade rat. Annals of Neurology, 2002, 52, 102-105.	5.3	25
188	Sphingolipids and microRNA Changes in Blood following Blast Traumatic Brain Injury: An Exploratory Study. Journal of Neurotrauma, 2018, 35, 353-361.	3.4	25
189	Development of a Staphylococcus aureus reporter strain with click beetle red luciferase for enhanced in vivo imaging of experimental bacteremiaÂand mixed infections. Scientific Reports, 2019, 9, 16663.	3.3	25
190	Magnetic Resonance Imaging of Monocytes Labeled with Ultrasmall Superparamagnetic Particles of Iron Oxide Using Magnetoelectroporation in an Animal Model of Multiple Sclerosis. Molecular Imaging, 2010, 9, 7290.2010.00016.	1.4	24
191	MR Imaging of Transplanted Stem Cells in Myocardial Infarction. Methods in Molecular Biology, 2011, 680, 141-152.	0.9	24
192	Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood–brain barrier opening after intra-arterial infusion. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1186-1194.	4.3	24
193	Overexpression of VLA-4 in glial-restricted precursors enhances their endothelial docking and induces diapedesis in a mouse stroke model. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 835-846.	4.3	24
194	CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1579-1591.	2.0	24
195	Magnetosonoporation: Instant magnetic labeling of stem cells. Magnetic Resonance in Medicine, 2010, 63, 1437-1441.	3.0	23
196	MR cholangiography demonstrates unsuspected rapid biliary clearance of nanoparticles in rodents: Implications for clinical translation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1385-1388.	3.3	23
197	Concise Review: Using Stem Cells to Prevent the Progression of Myopia—A Concept. Stem Cells, 2015, 33, 2104-2113.	3.2	23
198	Dual-modalityin vivo monitoring of subventricular zone stem cell migration and metabolism. Contrast Media and Molecular Imaging, 2007, 2, 130-138.	0.8	22

#	Article	IF	CITATIONS
199	MR-guided Portal Vein Delivery and Monitoring of Magnetocapsules: Assessment of Physiologic Effects on the Liver. Journal of Vascular and Interventional Radiology, 2011, 22, 1335-1340.	0.5	22
200	Magnetoencapsulated human islets xenotransplanted into swine: a comparison of different transplantation sites. Xenotransplantation, 2016, 23, 211-221.	2.8	22
201	Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie - International Edition, 2019, 58, 15512-15517.	13.8	22
202	Co-Registration of Bioluminescence Tomography, Computed Tomography, and Magnetic Resonance Imaging for Multimodal In Vivo Stem Cell Tracking. Tomography, 2016, 2, 158-165.	1.8	22
203	Brain engraftment and therapeutic potential of stem/progenitor cells derived from mouse skin. Journal of Gene Medicine, 2006, 8, 506-513.	2.8	20
204	Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Molecular Pharmaceutics, 2016, 13, 3043-3053.	4.6	20
205	Our approach towards developing a specific tumour-targeted MRI contrast agent for the brain. European Journal of Radiology, 1993, 16, 171-175.	2.6	19
206	In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques. Journal of Magnetic Resonance Imaging, 2007, 26, 339-343.	3.4	19
207	Neonatal desensitization does not universally prevent xenograft rejection. Nature Methods, 2012, 9, 856-858.	19.0	19
208	In Vivo Tracking Techniques for Cellular Regeneration, Replacement, and Redirection. Journal of Nuclear Medicine, 2012, 53, 1825-1828.	5.0	19
209	Biophysical Characterization of Human Protamine-1 as a Responsive CEST MR Contrast Agent. ACS Macro Letters, 2015, 4, 34-38.	4.8	19
210	Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. Micromachines, 2019, 10, 230.	2.9	19
211	In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nature Biomedical Engineering, 2022, 6, 658-666.	22.5	18
212	MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR in Biomedicine, 2007, 20, 673-681.	2.8	17
213	Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Experimental Neurology, 2016, 275, 154-161.	4.1	17
214	Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magnetic Resonance in Medicine, 2018, 79, 1010-1019.	3.0	17
215	Science to Practice: Can CT Be Performed for Multicolor Molecular Imaging?. Radiology, 2010, 256, 675-676.	7.3	16
216	Use of Magnetocapsules for in Vivo Visualization and Enhanced Survival of Xenogeneic HepG2 Cell Transplants. Cell Medicine, 2012, 4, 77-84.	5.0	16

#	Article	IF	CITATIONS
217	NOrmalized MAgnetization Ratio (NOMAR) filtering for creation of tissue selective contrast maps. Magnetic Resonance in Medicine, 2013, 69, 516-523.	3.0	16
218	Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials, 2014, 35, 7811-7818.	11.4	16
219	Multifunctional Theranostic Graphene Oxide Nanoflakes as MR Imaging Agents with Enhanced Photothermal and Radiosensitizing Properties. ACS Applied Bio Materials, 2021, 4, 4280-4291.	4.6	16
220	Folate receptor-targeted nanoprobes for molecular imaging of cancer: Friend or foe?. Nano Today, 2021, 39, 101173.	11.9	16
221	Pharmacokinetics of a High-Generation Dendrimer–Gd-DOTA. Academic Radiology, 2002, 9, S29-S33.	2.5	15
222	Noninvasive Monitoring of Immunosuppressive Drug Efficacy to Prevent Rejection of Intracerebral Glial Precursor Allografts. Cell Transplantation, 2012, 21, 2149-2157.	2.5	15
223	Science to Practice: Can Stem Cells Be Labeled Inside the Body Instead of Outside?. Radiology, 2013, 269, 1-3.	7.3	15
224	Fused X-ray and MR Imaging Guidance of Intrapericardial Delivery of Microencapsulated Human Mesenchymal Stem Cells in Immunocompetent Swine. Radiology, 2014, 272, 427-437.	7.3	15
225	Nonâ€Invasive imaging of extracellular vesicles: Quo vaditis in vivo?. Journal of Extracellular Vesicles, 2022, 11, .	12.2	15
226	Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION-46L. Journal of Magnetism and Magnetic Materials, 1999, 194, 217-223.	2.3	14
227	Magnetically Labeled Clial Cells as Cellular MR Contrast Agents. Academic Radiology, 2002, 9, S148-S150.	2.5	14
228	Magnetic resonance microscopy and histology of the CNS. Trends in Biotechnology, 2002, 20, S24-S28.	9.3	14
229	Noninvasive MRI of Endothelial Cell Response to Human Breast Cancer Cells. Neoplasia, 2006, 8, 207-213.	5.3	14
230	Optimization of magnetosonoporation for stem cell labeling. NMR in Biomedicine, 2010, 23, 480-484.	2.8	14
231	MRI of Transplanted Neural Stem Cells. Methods in Molecular Biology, 2011, 711, 435-449.	0.9	14
232	Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosensors and Bioelectronics, 2019, 141, 111442.	10.1	13
233	Special Cells, Special Considerations: The Challenges of Bringing Embryonic Stem Cells From the Laboratory to the Clinic. Clinical Pharmacology and Therapeutics, 2008, 83, 386-389.	4.7	12
234	CEST MRI Reporter Genes. Methods in Molecular Biology, 2011, 711, 271-280.	0.9	12

#	Article	IF	CITATIONS
235	Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Molecular Imaging, 2010, 9, 268-77.	1.4	12
236	Surfaceâ€enhanced Raman scattering: An emerging tool for sensing cellular function. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1802.	6.1	12
237	Pre- and postmortem imaging of transplanted cells. International Journal of Nanomedicine, 2015, 10, 5543.	6.7	11
238	Paradoxical Decrease in the Capture and Lymph Node Delivery of Cancer Vaccine Antigen Induced by a TLR4 Agonist as Visualized by Dual-Mode Imaging. Cancer Research, 2015, 75, 51-61.	0.9	11
239	Serial in vivo imaging of transplanted allogeneic neural stem cell survival in a mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2017, 289, 96-102.	4.1	11
240	Perfluorocarbon Labeling of Human Glial-Restricted Progenitors for 19F Magnetic Resonance Imaging. Stem Cells Translational Medicine, 2019, 8, 355-365.	3.3	11
241	In Vivo MRI Tracking of Tumor Vaccination and Antigen Presentation by Dendritic Cells. Molecular Imaging and Biology, 2022, 24, 198-207.	2.6	11
242	Effects of Supermagnetic Iron Oxide Labeling on the Major Functional Properties of Human Mesenchymal Stem Cells from Multiple Sclerosis Patients. International Journal of Stem Cells, 2010, 3, 144-153.	1.8	11
243	Using C-Arm X-Ray Imaging to Guide Local Reporter Probe Delivery for Tracking Stem Cell Engraftment. Theranostics, 2013, 3, 916-926.	10.0	10
244	Fluorocapsules allow in vivo monitoring of the mechanical stability of encapsulated islet cell transplants. Biomaterials, 2019, 221, 119410.	11.4	10
245	Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis with on resonance variable delay multiple pulse (onVDMP) CEST MRI. NeuroImage, 2020, 204, 116245.	4.2	10
246	In Vivo Imaging of Pancreatic Islet Grafts in Diabetes Treatment. Frontiers in Endocrinology, 2021, 12, 640117.	3.5	10
247	Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Frontiers in Robotics and Al, 2021, 8, 702566.	3.2	10
248	Recent progress in the use and tracking of transplanted islets as a personalized treatment for type 1 diabetes. Expert Review of Precision Medicine and Drug Development, 2017, 2, 57-67.	0.7	9
249	Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia, 2018, 66, 907-919.	4.9	9
250	In Vitro Assessment of Fluorine Nanoemulsion-Labeled Hyaluronan-Based Hydrogels for Precise Intrathecal Transplantation of Glial-Restricted Precursors. Molecular Imaging and Biology, 2019, 21, 1071-1078.	2.6	9
251	Radioimmunodetection of human small cell lung carcinoma xenografts in the nude rat using 111in-labelled monoclonal antibody MOC-31. European Journal of Cancer, 1993, 29, 1885-1890.	2.8	8
252	Science to Practice: Can Theranostic Fullerenes Be Used to Treat Brain Tumors?. Radiology, 2011, 261, 1-2.	7.3	8

#	Article	IF	CITATIONS
253	Intracerebral and subcutaneous xenografts of human SCLC in the nude rat: comparison of monoclonal antibody localization and tumor infiltrating lymphocytes. Journal of Neuro-Oncology, 1993, 16, 11-18.	2.9	7
254	Magnetic Manipulation of Blood Conductivity with Superparamagnetic Iron Oxide-Loaded Erythrocytes. ACS Applied Materials & amp; Interfaces, 2019, 11, 11194-11201.	8.0	7
255	Science to Practice: Can Macrophage Infiltration Serve as a Surrogate Marker for Stem Cell Viability?. Radiology, 2012, 264, 619-620.	7.3	6
256	Noninvasive Tracking of Alginate-Microencapsulated Cells. Methods in Molecular Biology, 2017, 1479, 143-155.	0.9	6
257	Gas vesicles as collapsible MRI contrast agents. Nature Materials, 2018, 17, 386-387.	27.5	6
258	Molecular Imaging of CXCL12 Promoter-driven HSV1-TK Reporter Gene Expression. Biotechnology and Bioprocess Engineering, 2018, 23, 208-217.	2.6	6
259	Enzymeâ€mediated intratumoral selfâ€assembly of nanotheranostics for enhanced imaging and tumor therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1786.	6.1	6
260	Science to Practice: Can Decreased Lymph Node MR Imaging Signal Intensity Be Used as a Biomarker for the Efficacy of Cancer Vaccination?. Radiology, 2015, 274, 1-3.	7.3	5
261	Detecting Different Cell Populations Using Multispectral 19F MRI. Radiology, 2019, 291, 358-359.	7.3	5
262	<i>In Vivo</i> Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation. ACS Applied Materials & amp; Interfaces, 2021, 13, 23423-23437.	8.0	5
263	Preparation and Characterization of a Phospholipid Membrane-Bound Tetrapeptide That Corresponds to the C-Terminus of the Gastrin/Cholecystokinin Hormone Family. Journal of Colloid and Interface Science, 2000, 227, 421-426.	9.4	4
264	Shape analysis of Somatosensory Evoked Potentials to detect a focal spinal cord lesion. , 2009, , .		4
265	Science to Practice: Highly Shifted Proton MR Imaging—A Shift toward Better Cell Tracking?. Radiology, 2014, 272, 615-617.	7.3	4
266	Science to Practice: Can MR Imaging Cell Tracking of Macrophage Infiltration Be Used as a Predictive Imaging Biomarker for Transplanted Stem Cell Rejection?. Radiology, 2017, 284, 307-309.	7.3	4
267	Imaging as a tool to accelerate the translation of extracellular vesicleâ€based therapies for central nervous system diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1688.	6.1	4
268	Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie, 2021, 133, 3969-3973.	2.0	4
269	Introduction: The Emergence of Nanoparticles as Imaging Platform in Biomedicine. , 2008, , 1-5.		3
270	The Magnetic Appeal of Silencing Theranostics. Diabetes, 2012, 61, 3068-3069.	0.6	3

#	Article	IF	CITATIONS
271	Dendrimers. Focus on Biotechnology, 2001, , 47-69.	0.4	2
272	Noninvasive Monitoring of Allogeneic Stem Cell Delivery with Dual-Modality Imaging-Visible Microcapsules in a Rabbit Model of Peripheral Arterial Disease. Stem Cells International, 2019, 2019, 1-10.	2.5	2
273	Titelbild: Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors (Angew. Chem. 8/2021). Angewandte Chemie, 2021, 133, 3869-3869.	2.0	2
274	From Molecules to Man: The Dawn of a Vitreous Man. Methods in Molecular Biology, 2011, 711, 3-14.	0.9	2
275	Physical Mechanism and Applications of CEST Contrast Agents. , 2007, , 85-100.		2
276	MR Contrast Agents for Molecular and Cellular Imaging. , 2003, , 721-739.		2
277	In Vivo Imaging of Implanted Hyaluronic Acid Hydrogel Biodegradation. Methods in Molecular Biology, 2022, 2394, 743-765.	0.9	2
278	Opportunities for Molecular Imaging in Multiple Sclerosis Management: Linking Probe to Treatment. Radiology, 2022, 303, 486-497.	7.3	2
279	Magnetic Nanoparticles and Neurotoxins for Treating Atrial Fibrillation. Circulation, 2010, 122, 2642-2644.	1.6	1
280	Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie, 2019, 131, 15658-15663.	2.0	1
281	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie, 2019, 131, 9976-9980.	2.0	1
282	Biodistribution of Glial Progenitors in a Three Dimensional-Printed Model of the Piglet Cerebral Ventricular System. Stem Cells and Development, 2019, 28, 515-527.	2.1	1
283	Evaluation of cell transplant-mediated attenuation of diffuse injury in experimental autoimmune encephalomyelitis using onVDMP CEST MRI. Experimental Neurology, 2020, 329, 113316.	4.1	1
284	Cell Tracking and Transplant Imaging. , 2017, , 593-603.		1
285	CEST MRI and MALDI imaging reveal metabolic alterations in the cervical lymph nodes of EAE mice. Journal of Neuroinflammation, 2022, 19, .	7.2	1
286	CMR 2005: 9.03: Novel magnetic resonance contrast mechanism for combined tracking of the delivery of mesenchymal stem cells and interventional devices. Contrast Media and Molecular Imaging, 2006, 1, 76-77.	0.8	0
287	Cover Picture: Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging (Angew. Chem. Int. Ed. 10/2011). Angewandte Chemie - International Edition, 2011, 50, 2189-2189.	13.8	0
288	Science to Practice: Can MR Relaxation and Diffusion Measurements Be Used to Detect in Vivo Differentiation of Transplanted Muscle Precursor Cells?. Radiology, 2015, 274, 629-631.	7.3	0

#	Article	IF	CITATIONS
289	Stem Cells: MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model (Adv. Funct. Mater.) Tj ETQq1	1 0174894314	l r g BT /Over
290	Molecular Considerations in Cell Transplant Imaging. Molecular and Translational Medicine, 2017, , 1-17.	0.4	0
291	Innenrücktitelbild: Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents (Angew. Chem. 29/2019). Angewandte Chemie, 2019, 131, 10113-10113.	2.0	0
292	Chimeric Antigen Receptor T-cell Immunotherapy Induces Transient Tumor Hyperoxia Instead of Hypoxia. Radiology Imaging Cancer, 2021, 3, e200135.	1.6	0
293	Cell Surveillance Using Magnetic Resonance Imaging. , 2021, , 811-829.		0
294	Cardiac arrest induces vascular endothelial leakage in the brain stem. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S255-S255.	4.3	0
295	MR cellular imaging of magnetically labeled neural stem cells in a dysmyelinated mouse brain model. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S510-S510.	4.3	0
296	MR Imaging and the Development of Stem Cell-Based Therapies. , 2006, , 511-533.		0
297	Structure-Specific Patterns of Neural Stem Cell Engraftment After Transplantation in the Adult Mouse Brain. Human Gene Therapy, 2006, .	2.7	0
298	Magnetic Resonance Imaging of Ferumoxide-Labeled Mesenchymal Stem Cells Seeded on Collagen Scaffolds?Relevance to Tissue Engineering. Tissue Engineering, 2006, .	4.6	0
299	Cellular Imaging of Cell Transplants. , 2007, , 359-371.		0
300	Emerging Interventional MR Applications. , 2012, , 395-401.		0
301	Cell Labeling Methods for Noninvasive MR Imaging of Stem Cells. , 2013, , 65-74.		0

302 In Vivo Imaging of MSCs. , 2013, , 389-402.

0