Hélio Zangrossi Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7755469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behavioral Effects of Acute and Chronic Imipramine in the Elevated T-Maze Model of Anxiety. Pharmacology Biochemistry and Behavior, 2000, 65, 571-576.	2.9	187
2	Antipanic-like effect of serotonin reuptake inhibitors in the elevated T-maze. Behavioural Brain Research, 2003, 147, 185-192.	2.2	130
3	Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neuroscience and Biobehavioral Reviews, 2014, 46, 397-406.	6.1	107
4	The Dual Role of Serotonin in Defense and the Mode of Action of Antidepressants on Generalized Anxiety and Panic Disorders. Central Nervous System Agents in Medicinal Chemistry, 2010, 10, 207-217.	1.1	100
5	Elevated mazes as animal models of anxiety: effects of serotonergic agents. Anais Da Academia Brasileira De Ciencias, 2007, 79, 71-85.	0.8	97
6	Involvement of 5-HT1A and 5-HT2 receptors of the dorsal periaqueductal gray in the regulation of the defensive behaviors generated by the elevated T-maze. Brain Research Bulletin, 2004, 64, 181-188.	3.0	86
7	The dorsal raphe nucleus exerts opposed control on generalized anxiety and panic-related defensive responses in rats. Behavioural Brain Research, 2003, 142, 125-133.	2.2	84
8	Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. European Journal of Pharmacology, 2003, 473, 153-161.	3.5	70
9	Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology, 2006, 183, 422-428.	3.1	57
10	Involvement of serotonin-mediated neurotransmission in the dorsal periaqueductal gray matter on cannabidiol chronic effects in panic-like responses in rats. Psychopharmacology, 2013, 226, 13-24.	3.1	53
11	Serotonin-2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect of acute imipramine and fluoxetine administration. International Journal of Neuropsychopharmacology, 2012, 15, 389-400.	2.1	51
12	Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: Evidence from the elevated T-maze. Neuropharmacology, 2007, 52, 1188-1195.	4.1	46
13	The median raphe nucleus in anxiety revisited. Journal of Psychopharmacology, 2013, 27, 1107-1115.	4.0	43
14	Facilitation of 5-HT1A-mediated neurotransmission in dorsal periaqueductal grey matter accounts for the panicolytic-like effect of chronic fluoxetine. International Journal of Neuropsychopharmacology, 2010, 13, 1079-1088.	2.1	39
15	Involvement of 5-HT2C and 5-HT1A receptors of the basolateral nucleus of the amygdala in the anxiolytic effect of chronic antidepressant treatment. Neuropharmacology, 2014, 79, 127-135.	4.1	39
16	5-HT1A receptors in the dorsal hippocampus mediate the anxiogenic effect induced by the stimulation of 5-HT neurons in the median raphe nucleus. European Neuropsychopharmacology, 2008, 18, 286-294.	0.7	38
17	5-HT2C receptor regulation of defensive responses in the rat dorsal periaqueductal gray. Neuropharmacology, 2011, 60, 216-222.	4.1	36
18	Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects. Behavioural Brain Research, 2013, 246, 103-110.	2.2	35

Hélio Zangrossi Jr

#	Article	IF	CITATIONS
19	Serotonergic neurons in the median raphe nucleus regulate inhibitory avoidance but not escape behavior in the rat elevated T-maze test of anxiety. Psychopharmacology, 2005, 179, 733-741.	3.1	33
20	The panicolytic-like effect of fluoxetine in the elevated T-maze is mediated by serotonin-induced activation of endogenous opioids in the dorsal periaqueductal grey. Journal of Psychopharmacology, 2012, 26, 525-531.	4.0	32
21	Anxiolytic-like effects of median raphe nucleus lesion in the elevated T-maze. Behavioural Brain Research, 2004, 153, 55-60.	2.2	30
22	5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses. Neuropharmacology, 2016, 107, 471-479.	4.1	30
23	Anti-aversive effects of the atypical antipsychotic, aripiprazole, in animal models of anxiety. Journal of Psychopharmacology, 2011, 25, 801-807.	4.0	27
24	Panic-like escape response elicited in mice by exposure to CO2, but not hypoxia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 178-186.	4.8	24
25	5-HT1A and 5-HT2A receptor control of a panic-like defensive response in the rat dorsomedial hypothalamic nucleus. Journal of Psychopharmacology, 2013, 27, 1116-1123.	4.0	22
26	Serotonin-2A receptor regulation of panic-like behavior in the rat dorsal periaqueductal gray matter: the role of GABA. Psychopharmacology, 2011, 218, 725-732.	3.1	19
27	Interaction between μ-opioid and 5-HT1A receptors in the regulation of panic-related defensive responses in the rat dorsal periaqueductal grey. Journal of Psychopharmacology, 2014, 28, 1155-1160.	4.0	19
28	5-HT1A receptors of the lateral septum regulate inhibitory avoidance but not escape behavior in rats. Pharmacology Biochemistry and Behavior, 2008, 89, 360-366.	2.9	18
29	Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology, 2014, 49, 321-330.	2.7	16
30	BDNF-TRKB signaling system of the dorsal periaqueductal gray matter is implicated in the panicolytic-like effect of antidepressant drugs. European Neuropsychopharmacology, 2015, 25, 913-922.	0.7	15
31	Role of 5-HT2C receptors of the dorsal hippocampus in the modulation of anxiety- and panic-related defensive responses in rats. Neuropharmacology, 2019, 148, 311-319.	4.1	15
32	Dorsal raphe nucleus regulation of a panic-like defensive behavior evoked by chemical stimulation of the rat dorsal periaqueductal gray matter. Behavioural Brain Research, 2010, 213, 195-200.	2.2	13
33	Opiorphin causes a panicolytic-like effect in rat panic models mediated by μ-opioid receptors in the dorsal periaqueductal gray. Neuropharmacology, 2016, 101, 264-270.	4.1	13
34	Anxiolytic-like effect of noradrenaline microinjection into the dorsal periaqueductal gray of rats. Behavioural Pharmacology, 2009, 20, 252-259.	1.7	12
35	Dorsomedial hypothalamus serotonin 1A receptors mediate a panic-related response in the elevated T-maze. Brain Research Bulletin, 2014, 109, 39-45.	3.0	11
36	Disinhibition of the rat prelimbic cortex promotes serotonergic activation of the dorsal raphe nucleus and panicolytic-like behavioral effects. Journal of Psychopharmacology, 2017, 31, 704-714.	4.0	11

#	Article	IF	CITATIONS
37	Participation of dorsal periaqueductal gray 5-HT1A receptors in the panicolytic-like effect of the κ-opioid receptor antagonist Nor-BNI. Behavioural Brain Research, 2017, 327, 75-82.	2.2	10
38	A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats. Molecular Neurobiology, 2019, 56, 6487-6500.	4.0	10
39	Nitric oxide in the dorsal periaqueductal gray mediates the panic-like escape response evoked by exposure to hypoxia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 321-327.	4.8	9
40	Influence of procedural variables on rat inhibitory avoidance and escape behaviors generated by the elevated T-maze. Behavioural Brain Research, 2014, 273, 45-51.	2.2	7
41	μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses. Journal of Psychopharmacology, 2017, 31, 715-721.	4.0	7
42	Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors. Neuropharmacology, 2017, 123, 80-87.	4.1	7
43	GABAA/benzodiazepine receptors in the dorsal periaqueductal gray mediate the panicolytic but not the anxiolytic effect of alprazolam in rats. Behavioural Brain Research, 2019, 364, 99-105.	2.2	7
44	Serotonin actions within the prelimbic cortex induce anxiolysis mediated by serotonin 1a receptors. Journal of Psychopharmacology, 2019, 33, 3-11.	4.0	7
45	Serotonin 2C receptors in the basolateral amygdala mediate the anxiogenic effect caused by serotonergic activation of the dorsal raphe dorsomedial subnucleus. Journal of Psychopharmacology, 2020, 34, 391-399.	4.0	7
46	Serotonin mediates the panicolytic-like effect of oxytocin in the dorsal periaqueductal gray. Journal of Psychopharmacology, 2020, 34, 383-390.	4.0	7
47	Role of 5-HT1A and 5-HT2C receptors of the dorsal periaqueductal gray in the anxiety- and panic-modulating effects of antidepressants in rats. Behavioural Brain Research, 2021, 404, 113159.	2.2	7
48	Enhanced responsiveness to hypoxic panicogenic challenge in female rats in late diestrus is suppressed by short-term, low-dose fluoxetine: Involvement of the dorsal raphe nucleus and the dorsal periaqueductal gray. Journal of Psychopharmacology, 2021, 35, 1523-1535.	4.0	7
49	Effects of chemical stimulation of the lateral wings of the dorsal raphe nucleus on panic-like defensive behaviors and Fos protein expression in rats. Behavioural Brain Research, 2017, 326, 103-111.	2.2	6
50	Role of 5-HT1A receptors in the ventral hippocampus in the regulation of anxiety- and panic-related defensive behaviors in rats. Behavioural Brain Research, 2021, 408, 113296.	2.2	6
51	Effects of the adjunctive treatment of antidepressants with opiorphin on a panic-like defensive response in rats. Behavioural Brain Research, 2020, 378, 112263.	2.2	5
52	Antipanic-like effect of esketamine and buprenorphine in rats exposed to acute hypoxia. Behavioural Brain Research, 2021, 418, 113651.	2.2	5
53	Panic-modulating effects of alprazolam, moclobemide and sumatriptan in the rat elevated T-maze. Behavioural Brain Research, 2016, 315, 115-122.	2.2	4
54	B2-kinin receptors in the dorsal periaqueductal gray are implicated in the panicolytic-like effect of opiorphin. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 493-498.	4.8	4

#	Article	IF	CITATIONS
55	Continuous and not continuous 2-week treadmill training enhances the performance in the passive avoidance test in ischemic gerbils. Neuroscience Letters, 2018, 665, 170-175.	2.1	2
56	Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception. Pharmacology Biochemistry and Behavior, 2020, 194, 172938.	2.9	2