Vasily V Zhakhovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/775543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limited and unlimited spike growth from grooved free surface of shocked solid. Journal of Applied Physics, 2022, 131, .	2.5	5
2	Physical Processes Accompanying Laser Ablation in Liquid. JETP Letters, 2022, 115, 16-22.	1.4	8
3	Laser Shock Wave: The Plasticity and Thickness of the Residual Deformation Layer and the Transition from the Elastoplastic to Elastic Propagation Mode. JETP Letters, 2022, 115, 71-78.	1.4	1
4	Attenuation and inflection of initially planar shock wave generated by femtosecond laser pulse. Optics and Laser Technology, 2022, 152, 108100.	4.6	5
5	Failure model with phase transition for ceramics under shock loading. Journal of Applied Physics, 2022, 131, 125106.	2.5	2
6	Melting of Titanium by a Shock Wave Generated by an Intense Femtosecond Laser Pulse. JETP Letters, 2022, 115, 523-530.	1.4	5
7	Diffraction on a Microbubble and the Morphology of the Silicon Surface Irradiated through Glycerol by a Pair of Femtosecond Laser Pulses. JETP Letters, 2021, 113, 75-81.	1.4	3
8	Laser shock peening. Journal of Physics: Conference Series, 2021, 1787, 012024.	0.4	0
9	Laser ablation of a multilayer target with layers of nanometer thickness. Journal of Physics: Conference Series, 2021, 1787, 012022.	0.4	1
10	Femtosecond Laser Irradiation of a Multilayer Metal–Metal Nanostructure. JETP Letters, 2021, 113, 308-316.	1.4	5
11	Heat and mass transfer at condensate–vapor interfaces. Physics-Uspekhi, 2021, 64, 109-140.	2.2	7
12	Elastoplastic and polymorphic transformations of iron at ultra-high strain rates in laser-driven shock waves. Journal of Applied Physics, 2021, 130, .	2.5	9
13	Similarity in ruthenium damage induced by photons with different energies: From visible light to hard X-rays. Applied Surface Science, 2020, 501, 143973.	6.1	15
14	Ruthenium under ultrafast laser excitation: Model and dataset for equation of state, conductivity, and electron-ion coupling. Data in Brief, 2020, 28, 104980.	1.0	11
15	Physical processes in laser ablation into liquid and laser shock wave pinning. Journal of Physics: Conference Series, 2020, 1556, 012004.	0.4	0
16	The model of iron properties for plate impact and explosive compression simulations. Journal of Physics: Conference Series, 2020, 1556, 012032.	0.4	3
17	Laser ablation in liquid. Journal of Physics: Conference Series, 2020, 1556, 012002.	0.4	2
18	Laser ablation in liquid: Heating, diffusion, and condensation. Journal of Physics: Conference Series, 2020, 1556, 012003.	0.4	0

#	Article	IF	CITATIONS
19	Photon Doppler Velocimetry and Simulation of Ejection of Particles from the Surface of Shock-Loaded Samples. Journal of Experimental and Theoretical Physics, 2020, 130, 338-357.	0.9	4
20	Two-level ablation and damage morphology of Ru films under femtosecond extreme UV irradiation. Applied Surface Science, 2020, 528, 146952.	6.1	15
21	Thermodynamics and the structure of clusters in the dense Au vapor from molecular dynamics simulation. Journal of Chemical Physics, 2020, 152, 224705.	3.0	8
22	Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation. Optical and Quantum Electronics, 2020, 52, 1.	3.3	27
23	Stationary shock waves in porous copper by SPH simulation. , 2020, 12, 64-75.	0.0	0
24	Parallel SPH modeling using dynamic domain decomposition and load balancing displacement of Voronoi subdomains. Computer Physics Communications, 2019, 234, 112-125.	7.5	33
25	Discharge initiation by a laser pulse in a vacuum gap. Journal of Physics: Conference Series, 2019, 1250, 012029.	0.4	2
26	Mesoscopic simulation of laser initiation in pentaerythritol tetranitrate. Journal of Physics: Conference Series, 2019, 1250, 012045.	0.4	0
27	Hydrodynamic phenomena induced by laser ablation of metal into liquid. Applied Surface Science, 2019, 492, 285-297.	6.1	24
28	Long-term evolution of spherical shell with boron carbide layer after explosive compression. Journal of Applied Physics, 2019, 126, .	2.5	5
29	Mechanical anisotropy of energetic polycrystals as possible initiation mechanism. Journal of Physics: Conference Series, 2019, 1147, 012040.	0.4	0
30	Transport properties of liquid metals and semiconductors from molecular dynamics simulation with the Kubo-Greenwood formula. Applied Surface Science, 2019, 478, 818-830.	6.1	10
31	Condensation of laserâ€produced gold plasma during expansion and cooling in a water environment. Contributions To Plasma Physics, 2019, 59, e201800180.	1.1	11
32	Laser-induced formation of holograms for generation of plasmons. Journal of Physics: Conference Series, 2019, 1147, 012068.	0.4	3
33	Dynamics of ruthenium mirror under action of soft x-ray ultrashort laser pulse. Journal of Physics: Conference Series, 2019, 1147, 012070.	0.4	0
34	Electrical resistivity of liquid expanded metals by Ziman approach. Journal of Physics: Conference Series, 2019, 1147, 012005.	0.4	1
35	Ablation into water: Fragmentation of metal via Richtmyer–Meshkov instability. Journal of Physics: Conference Series, 2019, 1147, 012064	0.4	4
36	Multiscale smoothed particle hydrodynamics simulation of detonation initiation. Journal of Physics: Conference Series, 2019, 1147, 012041.	0.4	1

#	Article	IF	CITATIONS
37	High-Energy-Density Physics and Laser Technologies. Journal of Experimental and Theoretical Physics, 2019, 129, 757-782.	0.9	11
38	Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18209-18217.	7.1	61
39	Liquid tin droplet fragmentation by ultra-short laser pulse. Journal of Physics: Conference Series, 2019, 1147, 012067.	0.4	1
40	10.1063/1.5099013.1., 2019, , .		0
41	Laser ablation caused by geometrically constrained illumination and inventive target design. Journal of Physics: Conference Series, 2018, 946, 012008.	0.4	2
42	Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration. Applied Physics Letters, 2018, 112, .	3.3	19
43	Energy redistribution between layers in multi-layered target heated by x-ray pulse. Journal of Physics: Conference Series, 2018, 946, 012009.	0.4	1
44	Formation of a Single Microstructure and Ablation into a Transparent Dielectric Material under Subnanosecond Laser Irradiation. JETP Letters, 2018, 108, 439-445.	1.4	7
45	Expansion and Fragmentation of a Liquid-Metal Droplet by a Short Laser Pulse. Physical Review Applied, 2018, 10, .	3.8	31
46	Thermomechanical ablation under plasmonic field excited by ultrashort laser pulse. Part I: Plasmonics. Journal of Physics: Conference Series, 2018, 1092, 012051.	0.4	1
47	Thermomechanical ablation under plasmonic field excited by ultrashort laser pulse. Part II. Journal of Physics: Conference Series, 2018, 1092, 012052.	0.4	1
48	Explicit failure model for boron carbide ceramics under shock loading. Journal of Applied Physics, 2018, 124, .	2.5	13
49	Dynamics of Gold Ablation into Water. Journal of Experimental and Theoretical Physics, 2018, 127, 79-106.	0.9	34
50	Study of damage structure formation on aluminum film targets by picosecond soft X-ray laser ablation around threshold region. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	5
51	Warm dense matter in extremely small volume - Hydrodynamics of nanofilms triggered by laser irradiation at diffraction limit. AlP Conference Proceedings, 2018, , .	0.4	1
52	Hotspots from atomistic simulation to mesoscopic hydrodynamics modeling. AIP Conference Proceedings, 2018, , .	0.4	0
53	Laser ablation of metal into liquid: Near critical point phenomena and hydrodynamic instability. AIP Conference Proceedings, 2018, , .	0.4	4

#	Article	IF	CITATIONS
55	Rarefaction after fast laser heating of a thin metal film on a glass mount. AIP Conference Proceedings, 2017, , .	0.4	3
56	The behavior of iron under ultrafast shock loading driven by a femtosecond laser. AIP Conference Proceedings, 2017, , .	0.4	13
57	Film-substrate hydrodynamic interaction initiated by femtosecond laser irradiation. AIP Conference Proceedings, 2017, , .	0.4	3
58	Detonation initiation in solid explosive: MD simulation using AB interatomic potential. AIP Conference Proceedings, 2017, , .	0.4	0
59	Soft x-ray laser ablation of metals and dielectrics. , 2017, , .		1
60	Shock-induced ejecta from a layer of spherical particles. Part I: SPH meso-scale simulation. Journal of Physics: Conference Series, 2017, 815, 012029.	0.4	0
61	Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale. Physical Review Applied, 2017, 8, .	3.8	45
62	Auto-balancing algorithm for parallel SPH simulation of materials in extremes. Lobachevskii Journal of Mathematics, 2017, 38, 893-897.	0.9	5
63	Simulations of short pulse laser-matter interaction in case of tight focusing onto thin film. Lobachevskii Journal of Mathematics, 2017, 38, 914-920.	0.9	2
64	Shock-induced ejecta from a layer of spherical particles. Part II: modeling with the non-equilibrium two-phase model of a granular medium. Journal of Physics: Conference Series, 2017, 815, 012030.	0.4	1
65	Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam. Quantum Electronics, 2017, 47, 509-521.	1.0	19
66	MD simulation of steady shock-wave fronts with phase transition in single-crystal iron. AIP Conference Proceedings, 2017, , .	0.4	12
67	Ejecta from shocked metals: Comparative simulations using molecular dynamics and smoothed particle hydrodynamics. AIP Conference Proceedings, 2017, , .	0.4	16
68	Extinction and growth of cylindrical hotspots in AB model explosive: molecular dynamics studies. Journal of Physics: Conference Series, 2017, 815, 012034.	0.4	0
69	SPH simulation of boron carbide under shock compression with different failure models. Journal of Physics: Conference Series, 2017, 815, 012012.	0.4	4
70	Response of explosive HMX to low-velocity impact: modeling by the crystal plasticity finite element method. Journal of Physics: Conference Series, 2017, 941, 012052.	0.4	0
71	Dynamic fracture of tantalum under extreme tensile stress. Science Advances, 2017, 3, e1602705.	10.3	41
72	Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations. Journal of Physics: Conference Series, 2016, 774, 012077.	0.4	0

#	Article	IF	CITATIONS
73	Metal film on a substrate: Dynamics under the action of ultrashort laser pulse. Journal of Physics: Conference Series, 2016, 774, 012100.	0.4	6
74	Blistering of film from substrate after action of ultrashort laser pulse. Journal of Physics: Conference Series, 2016, 774, 012102.	0.4	6
75	Redistribution of a material at femtosecond laser ablation of a thin silver film. JETP Letters, 2016, 104, 759-765.	1.4	8
76	Dynamics of laser ablation at the early stage during and after ultrashort pulse. Journal of Physics: Conference Series, 2016, 774, 012101.	0.4	4
77	Solitary Nanostructures Produced by Ultrashort Laser Pulse. Nanoscale Research Letters, 2016, 11, 177.	5.7	48
78	Laser printing of resonant plasmonic nanovoids. Nanoscale, 2016, 8, 12352-12361.	5.6	49
79	Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling. Journal of Physics: Conference Series, 2016, 774, 012097.	0.4	16
80	<i>Indirect</i> monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments. Journal of Applied Physics, 2016, 120, .	2.5	5
81	Heat conductivity of copper in two-temperature state. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	22
82	Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	18
83	Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics. Journal of Physics: Conference Series, 2016, 681, 012001.	0.4	9
84	Atomistic simulation of detonation initiation by ultra-short impact. Journal of Physics: Conference Series, 2015, 653, 012056.	0.4	0
85	Thin 10–100 nm film in contact with substrate: Dynamics after femtosecond laser irradiation. Journal of Physics: Conference Series, 2015, 653, 012003.	0.4	6
86	Shock-produced ejecta from tin: Comparative study by molecular dynamics and smoothed particle hydrodynamics methods. Journal of Physics: Conference Series, 2015, 653, 012043.	0.4	13
87	Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse. Applied Physics B: Lasers and Optics, 2015, 119, 401-411.	2.2	34
88	Hydrodynamics driven by ultrashort laser pulse: simulations and the optical pump—X-ray probe experiment. Applied Physics B: Lasers and Optics, 2015, 119, 413-419.	2.2	6
89	Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse. Journal of Experimental and Theoretical Physics, 2015, 120, 15-48.	0.9	54
90	Formation of nanostructures under femtosecond laser ablation of metals. Quantum Electronics, 2015, 45, 547-550.	1.0	25

4

#	Article	IF	CITATIONS
91	Surface nanodeformations caused by ultrashort laser pulse. Engineering Failure Analysis, 2015, 47, 328-337.	4.0	26
92	Surface nano-structuring produced by spallation of metal irradiated by an ultrashort laser pulse. Journal of Physics: Conference Series, 2014, 500, 112070.	0.4	15
93	Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations. Journal of Physics: Conference Series, 2014, 500, 172008.	0.4	16
94	Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations. Physical Review E, 2014, 90, 033312.	2.1	10
95	Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids. Journal of Physics: Conference Series, 2014, 500, 172007.	0.4	11
96	Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids. Journal of Physics: Conference Series, 2014, 500, 032021.	0.4	12
97	Formation of nanojets and nanodroplets by an ultrashort laser pulse at focusing in the diffraction limit. JETP Letters, 2014, 100, 4-10.	1.4	19
98	Ablation and nanostructuring of metals by femtosecond laser pulses. Quantum Electronics, 2014, 44, 535-539.	1.0	39
99	The effect of an ultrashort laser pulse on metals: Two-temperature relaxation, foaming of the melt, and freezing of the disintegrating nanofoam. Journal of Optical Technology (A Translation of) Tj ETQq1 1 0.7843	14orgBT/C	verslock 10 T
100	From laminar to turbulent detonations in energetic materials from molecular dynamics simulations. Journal of Physics: Conference Series, 2014, 500, 172005.	0.4	0
101	Two-temperature hydrodynamic expansion and coupling of strong elastic shock with supersonic melting front produced by ultrashort laser pulse. Journal of Physics: Conference Series, 2014, 500, 192023.	0.4	10
102	Ultrafast lasers and solids in highly excited states: results of hydrodynamics and molecular dynamics simulations. Journal of Physics: Conference Series, 2014, 510, 012041.	0.4	23
103	Nano-scale spinning detonation in a condensed phase energetic material. Journal of Physics: Conference Series, 2014, 500, 172006.	0.4	0
104	Screened environment-dependent reactive empirical bond-order potential for atomistic simulations of carbon materials. Physical Review B, 2013, 88, .	3.2	34
105	Electronâ€Ion Relaxation, Phase Transitions, and Surface Nanoâ€Structuring Produced by Ultrashort Laser Pulses in Metals. Contributions To Plasma Physics, 2013, 53, 796-810.	1.1	36
106	Ultrashort shock waves in nickel induced by femtosecond laser pulses. Physical Review B, 2013, 87, .	3.2	76
107	Ultrashort laser-matter interaction at moderate intensities: two-temperature relaxation, foaming of stretched melt, and freezing of evolving nanostructures. Proceedings of SPIE, 2013, , .	0.8	5

108 Shock-induced phase transition in diamond. , 2012, , .

#	Article	IF	CITATIONS
109	Effect of reactive chemistry on mechanisms of condensed phase detonation. , 2012, , .		Ο
110	Evolution of metastable elastic shockwaves in nickel. , 2012, , .		5
111	Cavitation and formation of foam-like structures inside exploding wires. AIP Conference Proceedings, 2012, , .	0.4	18
112	A new nickel EAM potential for atomistic simulations of ablation, spallation, and shockwave phenomena. AIP Conference Proceedings, 2012, , .	0.4	6
113	Shock-induced phase transitions in metals: Recrystallization of supercooled melt and melting of overheated solids. , 2012, , .		4
114	Evolution of Shock-Induced Orientation-Dependent Metastable States in Crystalline Aluminum. Physical Review Letters, 2012, 109, 125505.	7.8	57
115	Interaction of soft x-ray laser pulse radiation with aluminum surface: Nano-meter size surface modification. , 2012, , .		2
116	Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating. AIP Conference Proceedings, 2012, , .	0.4	14
117	Shock compression of diamond: Molecular dynamics simulations using different interatomic potentials. , 2012, , .		8
118	Single two-zone elastic-plastic shock waves in solids. , 2012, , .		6
119	Two-temperature thermodynamic and kinetic properties of transition metals irradiated by femtosecond lasers. , 2012, , .		34
120	MD simulations of laser-induced ultrashort shock waves in nickel. , 2012, , .		5
121	Ultrashort elastic and plastic shockwaves in aluminum. , 2012, , .		8
122	Super-elastic response of metals to laser-induced shock waves. , 2012, , .		5
123	Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse. JETP Letters, 2012, 95, 176-181.	1.4	102
124	Ablation of insulators under the action of short pulses of X-ray plasma lasers and free-electron lasers. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 473.	0.4	7
125	Superelasticity and the propagation of shock waves in crystals. JETP Letters, 2011, 93, 226-232.	1.4	31
126	Two-Zone Elastic-Plastic Single Shock Waves in Solids. Physical Review Letters, 2011, 107, 135502.	7.8	90

#	Article	IF	CITATIONS
127	Interaction of Short Laser Pulses in Wavelength Range from Infrared to Xâ€ray with Metals, Semiconductors, and Dielectrics. Contributions To Plasma Physics, 2011, 51, 361-366.	1.1	18
128	Laser Acoustic Probing of Two-Temperature Zone Created by Femtosecond Pulse. Contributions To Plasma Physics, 2011, 51, 367-374.	1.1	33
129	Twoâ€Temperature Warm Dense Matter Produced by Ultrashort Extreme Vacuum Ultravioletâ€Free Electron Laser (EUVâ€FEL) Pulse. Contributions To Plasma Physics, 2011, 51, 419-426.	1.1	21
130	Nanoscale surface modifications and formation of conical structures at aluminum surface induced by single shot exposure of soft x-ray laser pulse. Journal of Applied Physics, 2011, 109, 013504.	2.5	32
131	Molecular Dynamics Simulations of Femtosecond Laser Ablation and Spallation of Gold. , 2010, , .		5
132	Pump-probe method for measurement of thickness of molten layer produced by ultrashort laser pulse. , 2010, , .		6
133	Spallative ablation of dielectrics by X-ray laser. Applied Physics A: Materials Science and Processing, 2010, 101, 87-96.	2.3	34
134	Acoustic probing of two-temperature relaxation initiated byÂaction of ultrashort laser pulse. Applied Physics A: Materials Science and Processing, 2010, 101, 1-5.	2.3	16
135	Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Letters, 2010, 91, 471-477.	1.4	62
136	Elastic-plastic phenomena in ultrashort shock waves. JETP Letters, 2010, 92, 521-526.	1.4	40
137	Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1769-1807.	3.4	112
138	Ablation by short optical and x-ray laser pulses. , 2010, , .		4
139	Ablation and spallation of gold films irradiated by ultrashort laser pulses. Physical Review B, 2010, 82, ·	3.2	122
140	Low-threshold ablation of dielectrics irradiated by picosecond soft x-ray laser pulses. Applied Physics Letters, 2009, 94, 231107.	3.3	50
141	Spallative Ablation of Metals and Dielectrics. Contributions To Plasma Physics, 2009, 49, 455-466.	1.1	31
142	Two-temperature relaxation and melting after absorption of femtosecond laser pulse. Applied Surface Science, 2009, 255, 9712-9716.	6.1	87
143	Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Applied Surface Science, 2009, 255, 9592-9596.	6.1	184
144	Low threshold spallative ablation of large bandgap LiF dielectrics induced by picosecond soft X-ray laser pulses. , 2009, , .		0

9

#	Article	IF	CITATIONS
145	e-Science in high energy density science research. Fusion Engineering and Design, 2008, 83, 525-529.	1.9	1
146	Interaction of short laser pulses with metals at moderate intensities. Applied Physics A: Materials Science and Processing, 2008, 92, 939-943.	2.3	33
147	Thresholds for front-side ablation and rear-side spallation ofÂmetal foil irradiated by femtosecond laser pulse. Applied Physics A: Materials Science and Processing, 2008, 92, 797-801.	2.3	45
148	Nanospallation induced by an ultrashort laser pulse. Journal of Experimental and Theoretical Physics, 2008, 107, 1.	0.9	75
149	New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Letters, 2008, 87, 423-427.	1.4	52
150	Theoretical and experimental study of hydrodynamics of metal target irradiated by ultrashort laser pulse. , 2008, , .		11
151	Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography. Physics of Plasmas, 2008, 15, .	1.9	126
152	Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola. Proceedings of SPIE, 2008, , .	0.8	5
153	Laser ablation and spallation of crystalline aluminum simulated by molecular dynamics. Journal of Physics: Conference Series, 2008, 112, 042080.	0.4	17
154	Advanced laser-produced EUV light source for HVM with conversion efficiency of 5-7% and B-field mitigation of ions. Proceedings of SPIE, 2008, , .	0.8	12
155	Nanospallation induced by a femtosecond laser pulse. Proceedings of SPIE, 2007, , .	0.8	3
156	Simulation of the expansion of a crystal heated by an ultrashort laser pulse. Applied Surface Science, 2007, 253, 6390-6393.	6.1	13
157	Dynamics of plume and crater formation after action of femtosecond laser pulse. Applied Surface Science, 2007, 253, 6276-6282.	6.1	56
158	Progress in LPP EUV source development at Osaka University. , 2006, , .		1
159	Self-consistent Monte Carlo simulation of particle motion and photon transport in the Argon positive column. Journal of Plasma Physics, 2006, 72, 1005.	2.1	2
160	Ablated matter expansion and crater formation under the action of ultrashort laser pulse. Journal of Experimental and Theoretical Physics, 2006, 103, 183-197.	0.9	32
161	Atomistic Dynamics of the Richtmyer-Meshkov Instability in Cylindrical and Planar Geometries. AIP Conference Proceedings, 2006, , .	0.4	8
162	Molecular Dynamics Simulations of the Richtmyer-Meshkov Instability in Shock Loaded Solids. AIP Conference Proceedings, 2006, , .	0.4	10

#	Article	IF	CITATIONS
163	Coulomb explosion of hexa-fluorobenzene induced by an intense laser field. Chemical Physics Letters, 2005, 404, 379-383.	2.6	17
164	A new dynamical domain decomposition method for parallel molecular dynamics simulation. , 2005, , .		17
165	Estimation of emission efficiency for laser-produced EUV plasmas. , 2004, , .		5
166	Theoretical simulation of extreme UV radiation source for lithography. , 2004, 5374, 405.		3
167	Destruction of a solid film under the action of ultrashort laser pulse. JETP Letters, 2003, 77, 606-610.	1.4	50
168	Coulomb explosion of benzene induced by an intense laser field. Journal of Chemical Physics, 2002, 117, 3180-3189.	3.0	43
169	Corresponding states law and molecular dynamics simulations of the Lennard-Jones fluid. Journal of Chemical Physics, 2001, 115, 6623-6631.	3.0	83
170	The interactions of ultra-short high-intensity laser pulses with large molecules and clusters: Experimental and computational studies. Physics of Plasmas, 2001, 8, 2517-2524.	1.9	16
171	Dynamics of anisotropic Coulomb explosion of C60 under an intense laser field. , 2000, 3886, 521.		0
172	Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transitions. JETP Letters, 2000, 71, 167-172.	1.4	63
173	Anisotropic Coulomb explosion of C60 irradiated with a high-intensity femtosecond laser pulse. Journal of Chemical Physics, 2000, 112, 5012-5020.	3.0	64
174	Orientation Dependence of Shock Structure with Melting in L-J Crystal from Molecular Dynamics. Progress of Theoretical Physics Supplement, 2000, 138, 223-228.	0.1	11
175	Properties of a liquid–gas interface at high-rate evaporation. Journal of Chemical Physics, 1999, 110, 8722-8729.	3.0	55
176	Shock Wave Structure in Lennard-Jones Crystal via Molecular Dynamics. Physical Review Letters, 1999, 83, 1175-1178.	7.8	74
177	Molecular-dynamics simulation of evaporation of a liquid. Journal of Experimental and Theoretical Physics, 1997, 84, 734-745.	0.9	72
178	Shock wave structure in simple liquids. JETP Letters, 1997, 65, 755-761.	1.4	13
179	Shock wave structure in dense gases. JETP Letters, 1997, 66, 99-105.	1.4	28
180	Anomalous heating of a system of dust particles in a gas-discharge plasma. JETP Letters, 1997, 66, 419-425.	1.4	64

#	Article	IF	CITATIONS
181	Spectral manifestations of partial silicon-oxygen double bond character in oligophenylsiloxanes. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2280-2283.	0.0	0