David A Nicewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7755418/publications.pdf

Version: 2024-02-01

70 papers 15,267 citations

47 h-index

47006

71 g-index

78 all docs 78 docs citations

78 times ranked 8754 citing authors

#	Article	IF	Citations
1	Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews, 2022, 122, 1925-2016.	47.7	388
2	Arene radiofluorination enabled by photoredox-mediated halide interconversion. Nature Chemistry, 2022, 14, 216-223.	13.6	25
3	Ketone–Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals. Journal of the American Chemical Society, 2022, 144, 11888-11896.	13.7	34
4	\hat{l}^2 -Functionalization of Saturated Aza-Heterocycles Enabled by Organic Photoredox Catalysis. ACS Catalysis, 2021, 11, 3153-3158.	11.2	37
5	Milled Dry Ice as a C1 Source for the Carboxylation of Aryl Halides. Synlett, 2021, 32, 814-816.	1.8	9
6	Anti-Markovnikov Hydroazidation of Activated Olefins via Organic Photoredox Catalysis. Synlett, 2020, 31, 55-59.	1.8	15
7	Site-Selective C–H Alkylation of Piperazine Substrates via Organic Photoredox Catalysis. Organic Letters, 2020, 22, 679-683.	4.6	50
8	Nucleophilic Aromatic Substitution of Unactivated Fluoroarenes Enabled by Organic Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 17187-17194.	13.7	72
9	Direct Synthesis of Bicyclic Acetals via Visible Light Catalysis. IScience, 2020, 23, 101395.	4.1	15
10	19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nature Catalysis, 2020, 3, 734-742.	34.4	53
11	Cation Radical-Accelerated Nucleophilic Aromatic Substitution for Amination of Alkoxyarenes. Organic Letters, 2020, 22, 4817-4822.	4.6	33
12	Homobenzylic Oxygenation Enabled by Dual Organic Photoredox and Cobalt Catalysis. Journal of the American Chemical Society, 2020, 142, 10325-10330.	13.7	58
13	Design and Evaluation of Artificial Hybrid Photoredox Biocatalysts. ChemBioChem, 2020, 21, 3146-3150.	2.6	10
14	Discovery and characterization of an acridine radical photoreductant. Nature, 2020, 580, 76-80.	27.8	277
15	Regioselective Arene Câ^'H Alkylation Enabled by Organic Photoredox Catalysis. Angewandte Chemie, 2020, 132, 7495-7499.	2.0	13
16	Regioselective Arene Câ^'H Alkylation Enabled by Organic Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 7425-7429.	13.8	40
17	Development of a Large-Enrollment Course-Based Research Experience in an Undergraduate Organic Chemistry Laboratory: Structure–Function Relationships in Pyrylium Photoredox Catalysts. Journal of Chemical Education, 2020, 97, 1572-1578.	2.3	37
18	Direct Radiofluorination of Arene C–H Bonds via Photoredox Catalysis Using a Peroxide as the Terminal Oxidant. Organic Letters, 2020, 22, 7971-7975.	4.6	18

#	Article	IF	Citations
19	Arene Cyanation via Cation-Radical Accelerated-Nucleophilic Aromatic Substitution. Organic Letters, 2019, 21, 7114-7118.	4.6	47
20	Direct arene C–H fluorination with ¹⁸ F ^{â^'} via organic photoredox catalysis. Science, 2019, 364, 1170-1174.	12.6	120
21	Alcohol mediated degenerate chain transfer controlled cationic polymerisation of para-alkoxystyrene. Polymer Chemistry, 2019, 10, 4126-4133.	3.9	15
22	Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis. Synlett, 2019, 30, 827-832.	1.8	63
23	Mechanistic Investigations into the Cation Radical Newman–Kwart Rearrangement. ACS Catalysis, 2019, 9, 3926-3935.	11.2	27
24	A General Strategy for Aliphatic C–H Functionalization Enabled by Organic Photoredox Catalysis. Journal of the American Chemical Society, 2018, 140, 4213-4217.	13.7	175
25	Direct Synthesis of Polysubstituted Aldehydes via Visibleâ€Light Catalysis. Angewandte Chemie, 2018, 130, 2196-2200.	2.0	19
26	Direct Synthesis of Polysubstituted Aldehydes via Visibleâ€Light Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2174-2178.	13.8	53
27	Enantioselective counter-anions in photoredox catalysis: The asymmetric cation radical Diels-Alder reaction. Tetrahedron, 2018, 74, 3266-3272.	1.9	61
28	Generation and Alkylation of $\hat{l}\pm$ -Carbamyl Radicals via Organic Photoredox Catalysis. Journal of the American Chemical Society, 2018, 140, 9056-9060.	13.7	145
29	Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis. Angewandte Chemie, 2017, 129, 2129-2132.	2.0	21
30	Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis. Angewandte Chemie - International Edition, 2017, 56, 2097-2100.	13.8	63
31	Direct C–H Cyanation of Arenes via Organic Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 2880-2883.	13.7	187
32	Visible‣ightâ€Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives. Angewandte Chemie, 2017, 129, 7000-7004.	2.0	25
33	Visibleâ€Lightâ€Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives. Angewandte Chemie - International Edition, 2017, 56, 6896-6900.	13.8	68
34	Direct Aryl Câ^'H Amination with Primary Amines Using Organic Photoredox Catalysis. Angewandte Chemie, 2017, 129, 15850-15854.	2.0	39
35	Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 16100-16104.	13.7	168
36	Direct Aryl Câ^'H Amination with Primary Amines Using Organic Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 15644-15648.	13.8	137

#	Article	IF	CITATIONS
37	Predictive Model for Site-Selective Aryl and Heteroaryl C–H Functionalization via Organic Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 11288-11299.	13.7	133
38	Oxidation of alkyl benzenes by a flavin photooxidation catalyst on nanostructured metal-oxide films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9279-9283.	7.1	36
39	A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis. Accounts of Chemical Research, 2016, 49, 1997-2006.	15.6	404
40	Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7244-7249.	3.2	259
41	Organic Photoredox Catalysis. Chemical Reviews, 2016, 116, 10075-10166.	47.7	4,263
42	Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry. Synlett, 2016, 27, 714-723.	1.8	553
43	Visible Light Photoinitiated Metal-Free Living Cationic Polymerization of 4-Methoxystyrene. Journal of the American Chemical Society, 2015, 137, 7580-7583.	13.7	167
44	Synthesis of \hat{l}_{\pm} -Benzyloxyamino- \hat{l}^3 -butyrolactones via a Polar Radical Crossover Cycloaddition Reaction. Organic Letters, 2015, 17, 6082-6085.	4.6	49
45	Ambient-Temperature Newman–Kwart Rearrangement Mediated by Organic Photoredox Catalysis. Journal of the American Chemical Society, 2015, 137, 15684-15687.	13.7	62
46	Amide and Amine Nucleophiles in Polar Radical Crossover Cycloadditions: Synthesis of \hat{l}^3 -Lactams and Pyrrolidines. Organic Letters, 2015, 17, 1316-1319.	4.6	77
47	Hydrodecarboxylation of Carboxylic and Malonic Acid Derivatives via Organic Photoredox Catalysis: Substrate Scope and Mechanistic Insight. Journal of the American Chemical Society, 2015, 137, 11340-11348.	13.7	260
48	Site-selective arene C-H amination via photoredox catalysis. Science, 2015, 349, 1326-1330.	12.6	712
49	Divergent regioselectivity in photoredox-catalyzed hydrofunctionalization reactions of unsaturated amides and thioamides. Chemical Science, 2015, 6, 270-274.	7.4	99
50	Cyclization–endoperoxidation cascade reactions of dienes mediated by a pyrylium photoredox catalyst. Beilstein Journal of Organic Chemistry, 2014, 10, 1272-1281.	2.2	43
51	Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Alkene Hydrofunctionalization. Synlett, 2014, 25, 1191-1196.	1.8	55
52	Mechanistic Insight into the Photoredox Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Reactions. Journal of the American Chemical Society, 2014, 136, 17024-17035.	13.7	268
53	<i>anti</i> àâ€Markovnikov Hydroamination of Alkenes Catalyzed by a Twoâ€Component Organic Photoredox System: Direct Access to Phenethylamine Derivatives. Angewandte Chemie - International Edition, 2014, 53, 6198-6201.	13.8	229
54	Butyrolactone Synthesis via Polar Radical Crossover Cycloaddition Reactions: Diastereoselective Syntheses of Methylenolactocin and Protolichesterinic Acid. Organic Letters, 2014, 16, 4810-4813.	4.6	86

#	Article	IF	CITATIONS
55	Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. ACS Catalysis, 2014, 4, 355-360.	11.2	712
56	The direct anti-Markovnikov addition of mineral acids to styrenes. Nature Chemistry, 2014, 6, 720-726.	13.6	244
57	Direct Catalytic Anti-Markovnikov Addition of Carboxylic Acids to Alkenes. Journal of the American Chemical Society, 2013, 135, 10334-10337.	13.7	178
58	Synthesis of Highly Substituted Tetrahydrofurans by Catalytic Polarâ€Radicalâ€Crossover Cycloadditions of Alkenes and Alkenols. Angewandte Chemie - International Edition, 2013, 52, 3967-3971.	13.8	136
59	Synthesis of cyclobutane lignans via an organic single electron oxidant–electron relay system. Chemical Science, 2013, 4, 2625.	7.4	144
60	Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system. Chemical Science, 2013, 4, 3160.	7.4	395
61	Anti-Markovnikov Hydroamination of Alkenes Catalyzed by an Organic Photoredox System. Journal of the American Chemical Society, 2013, 135, 9588-9591.	13.7	268
62	Direct Catalytic Anti-Markovnikov Hydroetherification of Alkenols. Journal of the American Chemical Society, 2012, 134, 18577-18580.	13.7	321
63	Silyl Glyoxylates. Conception and Realization of Flexible Conjunctive Reagents for Multicomponent Coupling. Journal of Organic Chemistry, 2012, 77, 4503-4515.	3.2	58
64	Self-Consistent Synthesis of the Squalene Synthase Inhibitor Zaragozic Acid C via Controlled Oligomerization. Journal of the American Chemical Society, 2008, 130, 17281-17283.	13.7	59
65	Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 2008, 322, 77-80.	12.6	2,023
66	Three-Component Coupling Reactions of Silylglyoxylates, Alkynes, and Aldehydes:Â A Chemoselective One-Step Glycolate Aldol Construction. Journal of the American Chemical Society, 2005, 127, 6170-6171.	13.7	74
67	Catalytic Asymmetric Acylation of (Silyloxy)nitrile Anions. Angewandte Chemie - International Edition, 2004, 43, 2652-2655.	13.8	57
68	Enantioselective Cyanation/Brook Rearrangement/C-Acylation Reactions of Acylsilanes Catalyzed by Chiral Metal Alkoxides. Journal of Organic Chemistry, 2004, 69, 6548-6555.	3.2	62
69	Tandem Carbonâ^'Carbon Bond Constructions via Catalyzed Cyanation/Brook Rearrangement/C-Acylation Reactions of Acylsilanes. Organic Letters, 2002, 4, 2957-2960.	4.6	61
70	A Diastereoselective Synthesis of the ABCD Ring System of Rubriflordilactone B. Synlett, O, , .	1.8	0