Lyndon D Bastatas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7755411/publications.pdf

Version: 2024-02-01

759233 794594 20 406 12 19 citations h-index g-index papers 20 20 20 533 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mechanical characterization of multi-layered lipid nanoparticles using high-resolution AFM force spectroscopy. Journal of Industrial and Engineering Chemistry, 2022, 113, 283-292.	5.8	2
2	Addressing crosstalk in crossbar memory arrays with a resistive switching ZnO homojunction diode. Journal of Applied Physics, 2021, 129, .	2.5	1
3	The effects of sub-bandgap transitions and the defect density of states on the photocurrent response of a single ZnO-coated silica nanospring. Nanotechnology, 2021, 32, 035202.	2.6	17
4	Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives. Advanced Optical Materials, 2020, 8, 2000226.	7.3	28
5	Perovskite Lightâ€Emitting Electrochemical Cells: Enhanced Operational Stability of Perovskite Lightâ€Emitting Electrochemical Cells Leveraging Ionic Additives (Advanced Optical Materials 13/2020). Advanced Optical Materials, 2020, 8, 2070052.	7.3	1
6	The Effect of UV Illumination on the Room Temperature Detection of Vaporized Ammonium Nitrate by a ZnO Coated Nanospring-Based Sensor. Materials, 2019, 12, 302.	2.9	9
7	Evolution of the Stoichiometry and Electronic Structure of Cobalt Oxide in Thermally Treated Co-Doped ZnO Nanorods for Solar Cells. ACS Applied Nano Materials, 2019, 2, 4113-4120.	5.0	13
8	Luminescent properties of a 3,5-diphenylpyrazole bridged Pt(ii) dimer. Dalton Transactions, 2019, 48, 9684-9691.	3.3	18
9	Electrical characterization of ZnO-coated nanospring ensemble by impedance spectroscopy: probing the effect of thermal annealing. Nanotechnology, 2019, 30, 234006.	2.6	10
10	ZnO Microfiltration Membranes for Desalination by a Vacuum Flow-Through Evaporation Method. Membranes, 2019, 9, 156.	3.0	2
11	The Effect of the Dielectric Constant and Ion Mobility in Lightâ€Emitting Electrochemical Cells. ChemPlusChem, 2018, 83, 266-273.	2.8	22
12	Emergent Electrical Properties of Ensembles of 1D Nanostructures and Their Impact on Room Temperature Electrical Sensing of Ammonium Nitrate Vapor. ACS Sensors, 2018, 3, 2367-2374.	7.8	14
13	Understanding the superior temperature stability of iridium light-emitting electrochemical cells. Materials Horizons, 2017, 4, 657-664.	12.2	18
14	The Use of Additives in Ionic Transition Metal Complex Light-Emitting Electrochemical Cells. , 2017, , 93-119.		1
15	Influence of Lithium Additives in Small Molecule Light-Emitting Electrochemical Cells. ACS Applied Materials & Description (2016), 8, 16776-16782.	8.0	39
16	Enhanced Luminance of Electrochemical Cells with a Rationally Designed Ionic Iridium Complex and an Ionic Additive. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8888-8892.	8.0	54
17	Discerning the Impact of a Lithium Salt Additive in Thin-Film Light-Emitting Electrochemical Cells with Electrochemical Impedance Spectroscopy. Langmuir, 2016, 32, 9468-9474.	3.5	37
18	Phenyl substitution of cationic bis-cyclometalated iridium(<scp>iii</scp>) complexes for iTMC-LEECs. Dalton Transactions, 2016, 45, 17807-17823.	3.3	37

#	Article	IF	CITATIONS
19	Mechanical Responses of Cancer Cells on Nanoscaffolds for Adhesion Size Control. Macromolecular Bioscience, 2015, 15, 851-860.	4.1	7
20	AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1111-1120.	2.4	76