List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7755042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Readily Scalable Methodology for the Synthesis of Nonsymmetric Glyceryl Diethers by a Tandem Acid-/Base-Catalyzed Process. Organic Process Research and Development, 2020, 24, 154-162.	1.3	5
2	Glycerol Ethers as Hydrotropes and Their Use to Enhance the Solubility of Phenolic Acids in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5742-5749.	3.2	35
3	Glycerol-Derived Solvents: Synthesis and Properties of Symmetric Glyceryl Diethers. ACS Sustainable Chemistry and Engineering, 2019, 7, 13004-13014.	3.2	27
4	Role of Substituents in the Solid Acid-Catalyzed Cleavage of the β-O-4 Linkage in Lignin Models. ACS Sustainable Chemistry and Engineering, 2018, 6, 1837-1847.	3.2	29
5	Optimization of the Synthesis of Glycerol Derived Monoethers from Glycidol by Means of Heterogeneous Acid Catalysis. Molecules, 2018, 23, 2887.	1.7	9
6	Synthetic Transformations for the Valorization of Fatty Acid Derivatives. Synthesis, 2017, 49, 1444-1460.	1.2	42
7	Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere, 2017, 183, 277-285.	4.2	36
8	Glycerol as a source of designer solvents: physicochemical properties of low melting mixtures containing glycerol ethers and ammonium salts. Physical Chemistry Chemical Physics, 2017, 19, 28302-28312.	1.3	37
9	Synthesis of 3-alkoxypropan-1,2-diols from glycidol: experimental and theoretical studies for the optimization of the synthesis of glycerol derived solvents. Green Chemistry, 2017, 19, 4176-4185.	4.6	24
10	An expedient synthesis of resveratrol through a highly recoverable palladium catalyst. Tetrahedron, 2017, 73, 5581-5584.	1.0	12
11	Comparative ecotoxicity study of glycerol-biobased solvents. Environmental Chemistry, 2017, 14, 370.	0.7	13
12	Comparative ecotoxicology study of two neoteric solvents: Imidazolium ionic liquid vs. glycerol derivative. Ecotoxicology and Environmental Safety, 2016, 132, 429-434.	2.9	19
13	Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS). ChemistryOpen, 2015, 4, 308-317.	0.9	54
14	Polytopic bis(oxazoline)-based ligands for recoverable catalytic systems applied to the enantioselective Henry reaction. Organic and Biomolecular Chemistry, 2015, 13, 9314-9322.	1.5	9
15	An extremely highly recoverable clay-supported Pd nanoparticle catalyst for solvent-free Heck–Mizoroki reactions. RSC Advances, 2015, 5, 59983-59990.	1.7	27
16	Ecotoxicity studies of glycerol ethers in Vibrio fischeri: checking the environmental impact of glycerol-derived solvents. Green Chemistry, 2015, 17, 4326-4333.	4.6	35
17	Microwave-promoted solventless Mizoroki–Heck reactions catalysed by Pd nanoparticles supported on laponite clay. RSC Advances, 2015, 5, 10102-10109.	1.7	22
18	Pd nanoparticles immobilized in [bmim][PF6] supported on laponite clay as highly recyclable catalysts for the Mizoroki–Heck reaction. Applied Catalysis A: General, 2014, 472, 21-28.	2.2	34

#	Article	IF	CITATIONS
19	Polytopic Bis(oxazoline)â€Based Ligands for the Development of Recoverable Catalytic Systems Applied to the Cyclopropanation Reaction. European Journal of Organic Chemistry, 2014, 2014, 1531-1540.	1.2	14
20	Glycerol based solvents: synthesis, properties and applications. Green Chemistry, 2014, 16, 1007-1033.	4.6	229
21	The issue of â€~molecular radiators' in microwave-assisted reactions. Computational calculations on ring closing metathesis (RCM). Organic and Biomolecular Chemistry, 2014, 12, 2436-2445.	1.5	19
22	Asymmetric cyclopropanation in ionic liquids promoted by dicopper complexes of ditopic ligands. Tetrahedron: Asymmetry, 2014, 25, 833-837.	1.8	4
23	Quantitative structure–property relationships prediction of some physico-chemical properties of glycerol based solvents. Green Chemistry, 2013, 15, 2283.	4.6	24
24	AraBOX and XyliBOX based catalysts for cyclopropanations, Diels Alder cycloadditions and allylic additions. Tetrahedron: Asymmetry, 2013, 24, 750-757.	1.8	4
25	Multiphase enantioselective Kharasch–Sosnovsky allylic oxidation based on neoteric solvents and copper complexes of ditopic ligands. Dalton Transactions, 2012, 41, 8285.	1.6	21
26	Bis(oxazoline)-Based Coordination Polymers: A Recoverable System for Enantioselective Henry Reactions. Journal of Organic Chemistry, 2012, 77, 5525-5532.	1.7	33
27	Predicting the Enantioselectivity of the Copper atalysed Cyclopropanation of Alkenes by Using Quantitative Quadrantâ€Điagram Representations of the Catalysts. Chemistry - A European Journal, 2012, 18, 14026-14036.	1.7	39
28	DFT Studies on Cobalt atalyzed Cyclotrimerization Reactions: The Mechanism and Origin of Reaction Improvement under Microwave Irradiation. Chemistry - A European Journal, 2012, 18, 6217-6224.	1.7	36
29	A reusable enantioselective catalytic system for the Kharasch–Sosnovsky allylic oxidation of alkenes based on a ditopic azabis(oxazoline) ligand. Tetrahedron, 2012, 68, 3417-3422.	1.0	28
30	Solvents derived from glycerol modify classical regioselectivity in the enzymatic synthesis of disaccharides with Biolacta β-galactosidase. Green Chemistry, 2011, 13, 2810.	4.6	25
31	Accurate Calculation of Chemical Shifts in Highly Dynamic H ₂ @C ₆₀ through an Integrated Quantum Mechanics/Molecular Dynamics Scheme. Organic Letters, 2011, 13, 2528-2531.	2.4	11
32	Improved synthesis of disaccharides with Escherichia coli β-galactosidase using bio-solvents derived from glycerol. Tetrahedron, 2011, 67, 7708-7712.	1.0	22
33	CAFC9, 9th Congress on Catalysis Applied to Fine Chemicals (Zaragoza, Spain, September 13–16, 2010). Catalysis Today, 2011, 173, 1.	2.2	2
34	Polytopic Oxazolineâ€Based Chiral Ligands for Cyclopropanation Reactions: A New Strategy to Prepare Highly Recyclable Catalysts. Advanced Synthesis and Catalysis, 2011, 353, 2691-2700.	2.1	22
35	Can Enantioselectivity be Computed in Enthalpic Barrierless Reactions? The Case of Cu ^I â€Catalyzed Cyclopropanation of Alkenes. Chemistry - A European Journal, 2011, 17, 529-539.	1.7	14
36	Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents. Journal of Molecular Catalysis A, 2011, 334, 83-88.	4.8	17

#	Article	IF	CITATIONS
37	Applied Biotransformations in Green Solvents. Chemistry - A European Journal, 2010, 16, 9422-9437.	1.7	99
38	STUDIES IN THE AZOLE SERIES. CIV.1 EXPERIMETAL AND CALCULATED DIPOLE MOMENTS OF 3(5)-PHENYLPYPRAZOLES. Bulletin Des Sociétés Chimiques Belges, 2010, 104, 383-386.	0.0	6
39	Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers. Green Chemistry, 2010, 12, 426.	4.6	131
40	Stereoselectivity induced by support confinement effects. Aza-pyridinoxazolines: A new family of C1-symmetric ligands for copper-catalyzed enantioselective cyclopropanation reactions. Dalton Transactions, 2010, 39, 2098.	1.6	13
41	Study of the recycling possibilities for azabis(oxazoline)–cobalt complexes as catalysts for enantioselective conjugate reduction. Green Chemistry, 2010, 12, 435.	4.6	40
42	Heterogenization on Inorganic Supports: Methods and Applications. Catalysis By Metal Complexes, 2010, , 65-121.	0.6	6
43	Beyond reuse in chiral immobilized catalysis: The bis(oxazoline) case. Catalysis Today, 2009, 140, 44-50.	2.2	31
44	Noncovalent Immobilization of Enantioselective Catalysts. Chemical Reviews, 2009, 109, 360-417.	23.0	303
45	Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chemistry, 2009, 11, 1605.	4.6	54
46	The unusual reactivity of benzene and monosubstituted benzenes towards tetracyanoethylene oxide: a theoretical study. New Journal of Chemistry, 2009, 33, 471-478.	1.4	2
47	Enantioselective catalysis with chiral complexes immobilized on nanostructured supports. Chemical Society Reviews, 2009, 38, 695-706.	18.7	134
48	Enantiodiscrimination of equol in β-cyclodextrin: an experimental and computational study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 60, 103-113.	1.6	10
49	Recent advances in the immobilization of chiral catalysts containing bis(oxazolines) and related ligands. Coordination Chemistry Reviews, 2008, 252, 624-646.	9.5	96
50	Mechanistic insights on the site selectivity in successive 1,3-dipolar cycloadditions to meso-tetraarylporphyrins. Tetrahedron, 2008, 64, 7937-7943.	1.0	28
51	Surface confinement effects in enantioselective catalysis: Design of new heterogeneous chiral catalysts based on C1-symmetric bisoxazolines and their application in cyclopropanation reactions. Journal of Catalysis, 2008, 258, 378-385.	3.1	44
52	An Efficient and Straightforward Access to Sulfur Substituted [2.2]Paracyclophanes:  Application to Stereoselective Sulfenate Salt Alkylation. Organic Letters, 2008, 10, 1271-1274.	2.4	29
53	Preparation of α-hydroxyphosphonates over phosphate catalysts. Catalysis Communications, 2008, 9, 2503-2508.	1.6	29
54	Linking Homogeneous and Heterogeneous Enantioselective Catalysis through a Self-Assembled Coordination Polymer. Organic Letters, 2008, 10, 4995-4998.	2.4	42

#	Article	IF	CITATIONS
55	Surface Confinement Effects on Enantioselective Cyclopropanation. Reactions with Supported Chiral 8-Oxazolinylquinolineâ^'Copper Complexes. Organometallics, 2008, 27, 2246-2251.	1.1	28
56	Simple and Efficient Heterogeneous Copper Catalysts for Enantioselective Câ^'H Carbene Insertion. Organic Letters, 2007, 9, 731-733.	2.4	99
57	Supported Ionic-Liquid Films (SILF) as Two-Dimensional Nanoreactors for Enantioselective Reactions: Surface-Mediated Selectivity Modulation (SMSM). Chemistry - A European Journal, 2007, 13, 287-291.	1.7	77
58	QM/MM Modeling of Enantioselective Pybox–Ruthenium- and Box–Copper-Catalyzed Cyclopropanation Reactions: Scope, Performance, and Applications to Ligand Design. Chemistry - A European Journal, 2007, 13, 4064-4073.	1.7	43
59	<i>C</i> ₁ â€5ymmetric Versus <i>C</i> ₂ â€5ymmetric Ligands in Enantioselective Copper–Bis(oxazoline) atalyzed Cyclopropanation Reactions. Chemistry - A European Journal, 2007, 13, 8830-8839.	1.7	50
60	Mechanistic study of the ring-size modulation in Michael–Dieckmann type reactions of 2-acylaminoacrylates with ketene diethyl acetal. New Journal of Chemistry, 2007, 31, 224-229.	1.4	9
61	Conformational Preferences of Methacrolein in Dielsâ^'Alder and 1,3-Dipolar Cycloaddition Reactions. Journal of Organic Chemistry, 2006, 71, 9831-9840.	1.7	35
62	Synthesis of non-symmetric bisoxazoline compounds. An easy way to reach tailored chiral ligands. Tetrahedron: Asymmetry, 2006, 17, 2270-2275.	1.8	19
63	The First Synthesis of Organic—Inorganic Hybrid Materials with Chiral Bis(oxazoline) Ligands ChemInform, 2006, 37, no.	0.1	0
64	Aspartame analogues containing 1-amino-2-phenylcyclohexanecarboxylic acids (c6Phe). Part 2. Tetrahedron, 2005, 61, 2913-2919.	1.0	2
65	Reversible microencapsulation of pybox–Ru chiral catalysts: scope and limitations. Tetrahedron, 2005, 61, 12107-12110.	1.0	25
66	Catalytic sites in silica-supported titanium catalysts: silsesquioxane complexes as models. Journal of Catalysis, 2005, 233, 90-99.	3.1	74
67	Are AM1 ligand-protein binding enthalpies good enough for use in the rational design of new drugs?. Journal of Computational Chemistry, 2005, 26, 1347-1358.	1.5	38
68	The Source of theendoRule in the Dielsâ^'Alder Reaction: Are Secondary Orbital Interactions Really Necessary?. European Journal of Organic Chemistry, 2005, 2005, 85-90.	1.2	34
69	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2005, 44, 458-461.	7.2	27
70	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie, 2005, 117, 462-465.	1.6	9
71	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands ChemInform, 2005, 36, no.	0.1	0
72	An Efficient and General One-Pot Method for the Synthesis of Chiral Bis(oxazoline) and Pyridine Bis(oxazoline) Ligands. Synlett, 2005, 2005, 2321-2324.	1.0	9

#	Article	IF	CITATIONS
73	The first synthesis of organic–inorganic hybrid materials with chiral bis(oxazoline) ligands. Chemical Communications, 2005, , 4669.	2.2	17
74	Computational Mechanistic Studies on Enantioselective pyboxâ^'Ruthenium-Catalyzed Cyclopropanation Reactions. Organometallics, 2005, 24, 3448-3457.	1,1	19
75	Solvent Effects on the 9-Hydroxymethylanthracene +N-Ethylmaleimide Dielsâ^'Alder Reaction. A Theoretical Study. Journal of Organic Chemistry, 2005, 70, 1456-1458.	1.7	12
76	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands. Journal of Organic Chemistry, 2005, 70, 5536-5544.	1.7	49
77	Bis(oxazoline)–copper complexes supported by electrostatic interactions: scope and limitations. Journal of Catalysis, 2004, 221, 532-540.	3.1	49
78	The use of Lewis acids in the synthesis of 5-arylhydantoins. Journal of Catalysis, 2004, 226, 192-196.	3.1	8
79	Comparison of hydrophilic and hydrophobic silicas as supports for titanium catalysts. Applied Catalysis A: General, 2004, 276, 113-122.	2.2	17
80	Theoretical Insights into the Role of a Counterion in Copper-Catalyzed Enantioselective Cyclopropanation Reactions. Chemistry - A European Journal, 2004, 10, 758-765.	1.7	60
81	The Role of Binding Constants in the Efficiency of Chiral Catalysts Immobilized by Electrostatic Interactions: The Case of Azabis(oxazoline)–Copper Complexes. Chemistry - A European Journal, 2004, 10, 2997-3005.	1.7	71
82	The importance of complex stability for asymmetric copper-catalyzed cyclopropanations in [emim][OTf] ionic liquid: the bis(oxazoline)–azabis(oxazoline) case. Tetrahedron Letters, 2004, 45, 6765-6768.	0.7	50
83	Immobilized pybox systems as recoverable chiral catalysts. Comptes Rendus Chimie, 2004, 7, 161-167.	0.2	8
84	The replacement of mineral acids by sulfonic resins in the synthesis of rac-5-(4-hydroxyphenyl)hydantoin from p-hydroxymandelic acid and urea. Applied Catalysis A: General, 2004, 274, 9-14.	2.2	7
85	Comparison of the immobilization of chiral bis(oxazoline)–copper complexes onto anionic solids and in ionic liquids. Green Chemistry, 2004, 6, 93-98.	4.6	52
86	Bis(oxazoline)-copper complexes, immobilized by electrostatic interactions, as catalysts for enantioselective aziridination. Arkivoc, 2004, 2004, 67-73.	0.3	0
87	Title is missing!. Catalysis Letters, 2003, 88, 31-32.	1.4	2
88	Application of natural phosphate modified with sodium nitrate in the synthesis of chalcones: a soft and clean method. Journal of Catalysis, 2003, 213, 1-6.	3.1	56
89	Polymer immobilization of bis(oxazoline) ligands using dendrimers as cross-linkers. Tetrahedron: Asymmetry, 2003, 14, 773-778.	1.8	43
90	Surface-mediated improvement of enantioselectivity with clay-immobilized copper catalysts. Journal of Molecular Catalysis A, 2003, 196, 101-108.	4.8	54

#	Article	IF	CITATIONS
91	Optimization of cyclohexene epoxidation with dilute hydrogen peroxide and silica-supported titanium catalysts. Applied Catalysis A: General, 2003, 245, 363-376.	2.2	88
92	Heterogeneous catalysis in the synthesis and reactivity of allantoin. Green Chemistry, 2003, 5, 275-277.	4.6	12
93	Understanding the Unusual Regioselectivity in the Nucleophilic Ring-Opening Reactions of gem-Disubstituted Cyclic Sulfates. Experimental and Theoretical Studies. Journal of Organic Chemistry, 2003, 68, 4506-4513.	1.7	18
94	Experimental and Theoretical Studies on Structureâ^'Reactivity Relationships of Titanium-Modified Silicas in the Hydrogen Peroxide-Promoted Oxidation of Cyclohexene. Journal of Physical Chemistry B, 2003, 107, 519-526.	1.2	22
95	Mechanisms of Acid Decomposition of Dithiocarbamates. 4. Theoretical Calculations on the Water-Catalyzed Reaction. Journal of Organic Chemistry, 2002, 67, 2755-2761.	1.7	9
96	The First Immobilization of Pyridine-bis(oxazoline) Chiral Ligands. Organic Letters, 2002, 4, 3927-3930.	2.4	67
97	Theoretical Analysis of the Electron Spin Density Distribution of the Flavin Semiquinone Isoalloxazine Ring within Model Protein Environments. Journal of Physical Chemistry A, 2002, 106, 4729-4735.	1.1	37
98	Immobilisation of bis(oxazoline)–copper complexes on clays and nanocomposites. Influence of different parameters on activity and selectivity. Journal of Materials Chemistry, 2002, 12, 3290-3295.	6.7	55
99	Improvement of ligand economy controlled by polymer morphology: The case of polymer-Supported bis(oxazoline) catalysts. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1821-1824.	1.0	27
100	The use of solid acids to promote the one-pot synthesis of dl-5-(4-hydroxyphenyl)hydantoin. Applied Catalysis A: General, 2002, 224, 153-159.	2.2	10
101	Aspartame analogues containing 1-amino-2-phenylcyclohexanecarboxylic acids (c6Phe). Tetrahedron, 2002, 58, 4899-4905.	1.0	3
102	Bis(oxazoline)copper Complexes Covalently Bonded to Insoluble Support as Catalysts in Cyclopropanation Reactions. Journal of Organic Chemistry, 2001, 66, 8893-8901.	1.7	123
103	Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. Journal of the American Chemical Society, 2001, 123, 7616-7625.	6.6	176
104	Is MCM-41 really advantageous over amorphous silica? The case of grafted titanium epoxidation catalysts. Chemical Communications, 2001, , 1510-1511.	2.2	44
105	Title is missing!. Green Chemistry, 2001, 3, 271-274.	4.6	44
106	A test for the coexistence of reactive intermediates with different molecular composition in chiral Lewis acid-catalysed reactions: the case of Ti-TADDOLate-catalysed Diels–Alder reactions. Tetrahedron: Asymmetry, 2001, 12, 1829-1835.	1.8	6
107	Enantioselective cyclopropanation reactions in ionic liquids. Tetrahedron: Asymmetry, 2001, 12, 1891-1894.	1.8	75
108	Bis(oxazoline)-metal complexes immobilised by electrostatic interactions as heterogeneous catalysts for enantioselective Diels–Alder reactions. Journal of Molecular Catalysis A, 2001, 165, 211-218.	4.8	43

#	Article	IF	CITATIONS
109	Epoxidation of chiral electron-deficient alkenes with basic heterogeneous catalysts. Applied Catalysis A: General, 2001, 207, 239-246.	2.2	22
110	Tandem Dielsâ `Alder Aromatization Reactions of Furans under Unconventional Reaction Conditions â ` Experimental and Theoretical Studies. European Journal of Organic Chemistry, 2001, 2001, 2891.	1.2	32
111	Effect of the Reaction Conditions on the Epoxidation of Alkenes with Hydrogen Peroxide Catalyzed by Silica-Supported Titanium Derivatives. Journal of Catalysis, 2001, 204, 146-156.	3.1	50
112	How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie - International Edition, 2000, 39, 1503-1506.	7.2	98
113	Title is missing!. Topics in Catalysis, 2000, 13, 303-309.	1.3	36
114	Silica-Supported Titanium Derivatives as Catalysts for the Epoxidation of Alkenes with Hydrogen Peroxide: A New Way to Tuneable Catalytic Activity through Ligand Exchange. Journal of Catalysis, 2000, 189, 40-51.	3.1	95
115	Immobilizing a single pybox ligand onto a library of solid supports. Molecular Diversity, 2000, 6, 93-105.	2.1	4
116	Polymer-Supported Bis(oxazoline)â^'Copper Complexes as Catalysts in Cyclopropanation Reactions. Organic Letters, 2000, 2, 3905-3908.	2.4	109
117	Spectroscopic Study of the Structure of Bis(oxazoline)copper Complexes in Solution and Immobilized on Laponite Clay. Influence of the Structure on the Catalytic Performance. Langmuir, 2000, 16, 5607-5612.	1.6	38
118	Do Secondary Orbital Interactions Really Exist?. Accounts of Chemical Research, 2000, 33, 658-664.	7.6	153
119	Caracterización, mediante espectroscopia EPR, de los catalizadores quirales bis (Oxazolina)-Cu soportados en Laponitas. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 552-555.	0.9	Ο
120	Solvent and counterion effects in the asymmetric cyclopropanation catalysed by bis(oxazoline)–copper complexes. Journal of Molecular Catalysis A, 1999, 144, 85-89.	4.8	39
121	Bis(oxazoline)–Copper Complexes, Supported by Electrostatic Interactions, as Heterogeneous Catalysts for Enantioselective Cyclopropanation Reactions: Influence of the Anionic Support. Journal of Catalysis, 1999, 186, 214-221.	3.1	75
122	Homogeneous and Supported Copper Complexes of Cyclic and Open-Chain Polynitrogenated Ligands as Catalysts of Cyclopropanation Reactions. European Journal of Inorganic Chemistry, 1999, 1999, 2347-2354.	1.0	30
123	Theoretical evidence of a feasible concerted antara–antara cycloaddition. Chemical Communications, 1999, , 903-904.	2.2	1
124	On the Nature of the Lewis Acid Sites of Aluminum-Modified Silica. A Theoretical and Experimental Study. Journal of Physical Chemistry B, 1999, 103, 1664-1670.	1.2	12
125	Title is missing!. Catalysis Letters, 1998, 51, 235-239.	1.4	2
126	Empirical treatment of solvent-solute interactions: medium effects on the electronic absorption spectrum of ?-carotene. Journal of Physical Organic Chemistry, 1998, 11, 193-200.	0.9	21

#	Article	IF	CITATIONS
127	Clay-supported non-chiral and chiral Mn(salen) complexes as catalysts for olefin epoxidation. Journal of Molecular Catalysis A, 1998, 136, 47-57.	4.8	99
128	Clay-supported bis(oxazoline)–copper complexes as heterogeneous catalysts of enantioselective cyclopropanation reactions. Tetrahedron: Asymmetry, 1998, 9, 3997-4008.	1.8	62
129	Solubility of gases in fluoroorganic alcohols Part I. Solubilities of several non-polar gases in 1,1,1,3,3,3-hexafluoropropan-2-ol at 298.15 K and 101.33 kPa. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3595-3599.	1.7	20
130	Density Functional Theory Study of a Lewis Acid Catalyzed Dielsâ	6.6	123
131	Quantum Chemical Insights into the Mechanism of the TADDOLâ^'TiCl2Catalyzed Dielsâ^'Alder Reactions. Journal of Organic Chemistry, 1998, 63, 2321-2324.	1.7	14
132	Dramatic Medium Effects on Reactivity. The Ionization Sites of Pyrrole and Indole Carboxylic Acids. Journal of the American Chemical Society, 1998, 120, 13224-13229.	6.6	13
133	Solvent effects on Diels-Alder reactions. The use of aqueous mixtures of fluorinated alcohols and the study of reactions of acrylonitrile. Journal of the Chemical Society Perkin Transactions II, 1997, , 653.	0.9	78
134	An Ab Initio Study on the Conformational and Endo/exo Preferences of Acrylates in Diels-Alder Reactions. Tetrahedron, 1997, 53, 6057-6064.	1.0	23
135	Asymmetric cyclopropanation catalysed by cationic bis(oxazoline)-Cull complexes exchanged into clays. Tetrahedron: Asymmetry, 1997, 8, 2089-2092.	1.8	49
136	TADDOL-TiCl2 catalyzed Diels-Alder reactions: unexpected influence of the substituents in the 2-position of the dioxolane ring on the stereoselectivity. Tetrahedron: Asymmetry, 1997, 8, 2561-2570.	1.8	21
137	Contribution of different mechanisms and different active sites to the clay-catalyzed Diels–Alder reactions. Journal of Molecular Catalysis A, 1997, 121, 97-102.	4.8	15
138	Structure and relative Lewis acidity of the catalytic sites of an aluminium-modified silica gel A theoretical study. Journal of Molecular Catalysis A, 1997, 119, 95-103.	4.8	5
139	ZnCl2, ZnI2 and TiCl4 supported on silica gel as catalysts for the Diels-Alder reactions of furan. Journal of Molecular Catalysis A, 1997, 123, 43-47.	4.8	20
140	1,3-Dipolar cycloaddition of diazomethane to chiral azlactones. Experimental and theoretical studies. Tetrahedron, 1997, 53, 4479-4486.	1.0	24
141	Molecular modelling study of β-cyclodextrin inclusion complexes. Chemical Physics Letters, 1997, 271, 178-184.	1.2	42
142	Cyclopropanation reactions catalysed by copper(II)-exchanged clays and zeolites. Influence of the catalyst on the selectivity. Chemical Communications, 1996, , 1319-1320.	2.2	27
143	Is It [4 + 2] or [2 + 4]? A New Look at Lewis Acid Catalyzed Dielsâ^'Alder Reactions. Journal of the American Chemical Society, 1996, 118, 11680-11681.	6.6	24
144	Investigation of Dienophileâ^'TiCl4Complexation by Means of X-ray Absorption and13C-NMR Spectroscopies§. Journal of Organic Chemistry, 1996, 61, 1636-1642.	1.7	7

#	Article	IF	CITATIONS
145	First Asymmetric Dielsâ^'Alder Reactions of Furan and Chiral Acrylates. Usefulness of Acid Heterogeneous Catalysts. Journal of Organic Chemistry, 1996, 61, 9479-9482.	1.7	47
146	Modelling of solvent effects on the Diels–Alder reaction. Chemical Society Reviews, 1996, 25, 209-218.	18.7	94
147	Calcined and silylated K10 montmorillonites as catalysts of pericyclic reactions of trans-anethole. Chemical Communications, 1996, , 1981-1982.	2.2	9
148	On the conformational preferences of \hat{I}_{\pm}, \hat{I}^2 -unsaturated carbonyl compounds. An ab initio study. Computational and Theoretical Chemistry, 1996, 362, 187-197.	1.5	20
149	AlPO4catalyzed Diels-Alder reaction of cyclopentadiene with (-)-menthyl acrylate. Influence of catalyst surface properties. Catalysis Letters, 1996, 36, 215-221.	1.4	12
150	Comparison of AlEt2Cl and ZnCl2 supported on silica gel as catalysts of Diels-Alder reactions. Influence of the nature of the dienophile. Catalysis Letters, 1996, 37, 261-266.	1.4	11
151	A new titanium-silica catalyst for the epoxidation of alkenes. Journal of Molecular Catalysis A, 1996, 112, 259-267.	4.8	74
152	Chiral lewis acids supported on silica gel and alumina, and their use as catalysts in Diels-Alder reactions of methacrolein and bromoacrolein. Tetrahedron: Asymmetry, 1996, 7, 2263-2276.	1.8	35
153	Molecular modelling of the isothiazolo[5,4-b]pyridin-3(2H)-one derivatives. Tetrahedron, 1996, 52, 8947-8956.	1.0	8
154	Diastereoselective Strecker reaction of D-glyceraldehyde derivatives. A novel route to (2S,3S)- and (2R,3S)-2-amino-3,4-dihydroxybutyric acid. Tetrahedron, 1996, 52, 9563-9574.	1.0	34
155	Comparison of several heterogeneous catalysts in the epoxidation of \hat{I}_{\pm} -isophorone with hydroperoxides. Tetrahedron Letters, 1996, 37, 5995-5996.	0.7	45
156	Heterogeneous activation of Diels-Alder reactions of non-chiral and chiral (E)-2-cyanocinnamates. Applied Catalysis A: General, 1996, 136, 113-123.	2.2	12
157	Diels-Alder reactions of (E)-2-phenyl-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylen]-5(4H)-oxazolone with heterogeneous catalysts. Tetrahedron: Asymmetry, 1996, 7, 2391-2398.	1.8	19
158	A model for the interaction between β-cyclodextrin and some acrylic esters. Chemical Physics Letters, 1995, 245, 335-342.	1.2	20
159	Metal complexes of biologically important ligands: Synthesis of amino acidato complexes of PdII containing a C,N-cyclometallated group as an ancillary ligand. Journal of Organometallic Chemistry, 1995, 490, 35-43.	0.8	51
160	The use of heterogeneous catalysis in Diels-Alder reactions of N-acetyl-α,β-dehydroalaninates. Tetrahedron, 1995, 51, 1295-1300.	1.0	31
161	(Z)- and (E)-2-phenyl-4-benzylidene-5(4H)-oxazolones as dienophiles. Improved selectivity by the use of heterogeneous catalysts. Tetrahedron, 1995, 51, 9217-9222.	1.0	17
162	Clay-catalyzed Friedel-Crafts alkylation of anisole with dienes. Applied Catalysis A: General, 1995, 123, 273-287.	2.2	19

#	Article	IF	CITATIONS
163	Diels-Alder reactions of α-amino acid precursors by heterogeneous catalysis: Thermal vs. microwave activation. Applied Catalysis A: General, 1995, 131, 159-166.	2.2	20
164	Diels-Alder reactions in \hat{l}^2 -cyclodextrin cavities. A molecular modelling study. Tetrahedron Letters, 1995, 36, 2129-2132.	0.7	19
165	Hydrotalcite-promoted epoxidation of electron-deficient alkenes with hydrogen peroxide. Tetrahedron Letters, 1995, 36, 4125-4128.	0.7	102
166	Solvent effects on Diels-Alder reactions. A semi-empirical study. Computational and Theoretical Chemistry, 1995, 331, 37-50.	1.5	27
167	Hydrotalcite-Catalyzed Alkylation of 2,4-Pentanedione. Synthetic Communications, 1995, 25, 1745-1750.	1.1	26
168	Importance of electronic and nuclear polarization energy on diastereofacial selectivity of Diels–Alder reactions in aqueous solution. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	18
169	A new titanium–silica catalyst for the epoxidation of non-functionalized alkenes and allylic alcohols. Journal of the Chemical Society Chemical Communications, 1995, , 539-540.	2.0	48
170	Study of the asymmetric diels-alder reaction of a chiral azlactone. Tetrahedron: Asymmetry, 1994, 5, 759-766.	1.8	17
171	Heterogeneous catalysis of asymmetric Diels—Alder reactions. Journal of Molecular Catalysis, 1994, 89, 159-164.	1.2	6
172	Solvent effects on endo/exo- and regio-selectivities of Diels–Alder reactions of carbonyl-containing dienophiles. Journal of the Chemical Society Perkin Transactions II, 1994, , 847-851.	0.9	40
173	On the role of hexafluoroisopropanol in Diels–Alder reactions of acid-sensitive reagents. Canadian Journal of Chemistry, 1994, 72, 308-311.	0.6	27
174	X-Ray absorption spectroscopy investigation on the structure of methyl acrylate–TiCl4complexes in solution. Journal of the Chemical Society Chemical Communications, 1994, , 2165-2166.	2.0	7
175	Identification of Diels-Alder regioisomers by mass spectrometry coupled with theoretical calculations. Organic Mass Spectrometry, 1993, 28, 752-758.	1.3	1
176	13C NMR of pyrazoles. Magnetic Resonance in Chemistry, 1993, 31, 107-168.	1.1	123
177	Relationship between solvent effects and catalyst activation method in a clay-catalysed Diels—Alder reaction. Journal of Molecular Catalysis, 1993, 79, 305-310.	1.2	10
178	Comparison of the catalytic properties of protonic zeolites and exchanged clays for Diels-Alder synthesis. Applied Catalysis A: General, 1993, 101, 253-267.	2.2	50
179	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of carbonyl-containing dienophiles. Tetrahedron, 1993, 49, 4073-4084.	1.0	46
180	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 621-624.	1.8	33

#	Article	IF	CITATIONS
181	Fluorinated alcohols as solvents for diels-alder reactions of chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 1613-1618.	1.8	24
182	AlPO4-Catalysed asymmetric Diels-Alder reactions of cyclopentadiene with chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 2507-2512.	1.8	25
183	Clay-catalysed asymmetric Diels-Alder reaction of cyclopentadiene with chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 223-228.	1.8	20
184	Solvent effects on the mechanism and selectivities of asymmetric Diels-Alder reactions. Journal of the American Chemical Society, 1993, 115, 8780-8787.	6.6	142
185	Experimental and theoretical study of the influence of the solvent on asymmetric diels?alder reactions. Journal of Physical Organic Chemistry, 1992, 5, 230-238.	0.9	68
186	Effect of clay calcination on clay-catalysed Diels-Alder reactions of cyclopentadiene with methyl and (â^')-menthyl acrylates. Tetrahedron, 1992, 48, 6467-6476.	1.0	32
187	Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study. Tetrahedron, 1992, 48, 5209-5218.	1.0	31
188	Factors influencing the k10 montmorillonite-catalyzed diels-alder reaction between methyl acrylate and cyclopentadiene. Journal of Catalysis, 1992, 137, 394-407.	3.1	62
189	A Theoretical (AM1) and Experimental Dipole Moment Study of 5(4H)â€Oxazolones. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 945-951.	0.0	1
190	A study on the role of solvent in clay-catalysed Diels—Alder reactions. Journal of Molecular Catalysis, 1991, 68, L31-L34.	1.2	13
191	Mass spectrometry in stereochemical problems. 6 — The case of mono and di-substituted norbornanes. Organic Mass Spectrometry, 1991, 26, 977-984.	1.3	11
192	Clay-catalysed asymmetric diels-alder reaction of cyclopentadiene with (â^')-menthyl acrylate. Tetrahedron: Asymmetry, 1991, 2, 953-956.	1.8	25
193	Development of a model to explain the influence of the solvent on the rate and selectivity of diels-alder reactions. Journal of Physical Organic Chemistry, 1991, 4, 48-52.	0.9	55
194	Electron impact mass spectrometry and collisional spectroscopy in the structural characterization of 4â€benzylidene and 4â€phenylethylideneâ€2â€phenylâ€5(4 <i>H</i>)â€oxazolones. Journal of Heterocyclic Chemistry, 1990, 27, 1495-1499.	1.4	16
195	Acidity in water (pKa values) of carboxylic acids derived from simple heterocycles (azoles and azines). Collection of Czechoslovak Chemical Communications, 1990, 55, 72-79.	1.0	16
196	Electronic effects of heterocyclic substituents. Spectroscopical and theoretical (AM1) study in a series of heterocyclic carboxaldehydes. Canadian Journal of Chemistry, 1990, 68, 1477-1481.	0.6	22
197	Description of Heterocyclic Substituents: A Free-Wilson Type Approach Using D-Optimal Designs. QSAR and Combinatorial Science, 1987, 6, 173-178.	1.4	15
198	A FACILE AND EFFICIENT SYNTHESIS OF PYRROLE-3-CARBOXYLIC ACID FROM PYRROLE. Organic Preparations and Procedures International, 1986, 18, 283-285.	0.6	7

#	Article	IF	CITATIONS
199	Non-covalent Immobilization of Catalysts Based on Chiral Diazaligands. , 0, , 149-190.		4