Andrew J Woo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7754766/publications.pdf

Version: 2024-02-01

567281 752698 1,470 23 15 20 citations h-index g-index papers 23 23 23 3487 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer. Nature Communications, 2021, 12, 1920.	12.8	19
2	Small nucleolar RNA networks are upâ€regulated during human anaphylaxis. Clinical and Experimental Allergy, 2021, 51, 1310-1321.	2.9	5
3	Abstract 2379: microRNA-7 replacement therapy: a promising approach for hepatocellular carcinoma. , 2021, , .		O
4	The tumor suppressor miR-642a-5p targets Wilms Tumor 1 gene and cell-cycle progression in prostate cancer. Scientific Reports, 2021, 11, 18003.	3.3	10
5	Targeting RSPO3-LGR4 Signaling for Leukemia Stem Cell Eradication in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 263-278.e6.	16.8	59
6	Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene, 2019, 38, 140-150.	5.9	55
7	miR-101 suppresses the development of <i>MLL</i> -rearranged acute myeloid leukemia. Haematologica, 2019, 104, e296-e299.	3.5	14
8	Zfp281 (ZBP-99) plays a functionally redundant role with Zfp148 (ZBP-89) during erythroid development. Blood Advances, 2019, 3, 2499-2511.	5.2	7
9	JMJD1C-mediated metabolic dysregulation contributes to HOXA9-dependent leukemogenesis. Leukemia, 2019, 33, 1400-1410.	7.2	31
10	CpG island-mediated global gene regulatory modes in mouse embryonic stem cells. Nature Communications, 2014, 5, 5490.	12.8	26
11	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	9.7	112
12	Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 288-298.	2.9	54
13	Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation. Journal of Clinical Investigation, 2013, 123, 3292-3304.	8.2	37
14	Direct Recruitment of Polycomb Repressive Complex 1 to Chromatin by Core Binding Transcription Factors. Molecular Cell, 2012, 45, 330-343.	9.7	188
15	A Src family kinase–Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes and Development, 2012, 26, 1587-1601.	5.9	52
16	Essential Role of the Transcription Factor ZBP-89 in Lymphopoiesis. Blood, 2012, 120, 277-277.	1.4	0
17	Role of ZBP-89 in human globin gene regulation and erythroid differentiation. Blood, 2011, 118, 3684-3693.	1.4	26
18	A Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs. Cell, 2010, 143, 313-324.	28.9	606

Andrew J Woo

#	Article	IF	CITATIONS
19	Role of the Krul`ppel-Type Zinc Finger Transcription Factor ZBP-89 In Human Globin Gene Regulation and Erythroid Development. Blood, 2010, 116, 2067-2067.	1.4	O
20	Differentiation-Dependent Interactions between RUNX-1 and FLI-1 during Megakaryocyte Development. Molecular and Cellular Biology, 2009, 29, 4103-4115.	2.3	71
21	Identification of ZBP-89 as a Novel GATA-1-Associated Transcription Factor Involved in Megakaryocytic and Erythroid Development. Molecular and Cellular Biology, 2008, 28, 2675-2689.	2.3	62
22	Identification of zfp148 (ZBP-89) as a Novel GATA-1 Associated Transcription Factor Involved in Megakaryopoiesis and Definitive Erythropoiesis Blood, 2005, 106, 828-828.	1.4	3
23	A Proteomics Approach for the Identification of DNA Binding Activities Observed in the Electrophoretic Mobility Shift Assay. Molecular and Cellular Proteomics, 2002, 1, 472-478.	3.8	33