Annemieke Kavelaars

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/77544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The neuroimmune basis of fatigue. Trends in Neurosciences, 2014, 37, 39-46.	8.6	254
2	Dorsal Root Ganglion Infiltration by Macrophages Contributes toÂPaclitaxel Chemotherapy-Induced Peripheral Neuropathy. Journal of Pain, 2016, 17, 775-786.	1.4	237
3	Decreased expression and activity of Gâ€proteinâ€coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB Journal, 1999, 13, 715-725.	0.5	200
4	CD8 ⁺ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. Journal of Neuroscience, 2016, 36, 11074-11083.	3.6	164
5	beta-Endorphin: Cytokine and Neuropeptide. Immunological Reviews, 1991, 119, 41-63.	6.0	148
6	HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain, 2017, 158, 1126-1137.	4.2	136
7	Mechanisms of chemotherapy-induced behavioral toxicities. Frontiers in Neuroscience, 2015, 9, 131.	2.8	133
8	The Anti-Diabetic Drug Metformin Protects against Chemotherapy-Induced Peripheral Neuropathy in a Mouse Model. PLoS ONE, 2014, 9, e100701.	2.5	132
9	Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Experimental Neurology, 2014, 261, 53-64.	4.1	132
10	MicroRNA-124 as a novel treatment for persistent hyperalgesia. Journal of Neuroinflammation, 2012, 9, 143.	7.2	129
11	Beyond symptomatic relief for chemotherapyâ€induced peripheral neuropathy: Targeting the source. Cancer, 2018, 124, 2289-2298.	4.1	115
12	Transition to chronic pain: opportunities for novel therapeutics. Nature Reviews Neuroscience, 2018, 19, 383-384.	10.2	113
13	Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice. PLoS ONE, 2016, 11, e0151890.	2.5	108
14	G Protein-Coupled Receptor Kinase 2 in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2005, 174, 4400-4406.	0.8	105
15	Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3036-3041.	7.1	104
16	GRK2: A Novel Cell-Specific Regulator of Severity and Duration of Inflammatory Pain. Journal of Neuroscience, 2010, 30, 2138-2149.	3.6	103
17	Regulated expression of α-1 adrenergic receptors in the immune system. Brain, Behavior, and Immunity, 2002, 16, 799-807.	4.1	98
18	Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain. Journal of Pain, 2014, 15, 496-506.	1.4	98

2

ANNEMIEKE KAVELAARS

#	Article	IF	CITATIONS
19	Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatric Research, 2010, 68, 1.	2.3	96
20	Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathologica Communications, 2018, 6, 139.	5.2	93
21	Pifithrin-μ Prevents Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Research, 2017, 77, 742-752.	0.9	89
22	T Cells as an Emerging Target for Chronic Pain Therapy. Frontiers in Molecular Neuroscience, 2019, 12, 216.	2.9	87
23	Microglial/macrophage GRK2 determines duration of peripheral IL-1Î ² -induced hyperalgesia: Contribution of spinal cord CX3CR1, p38 and IL-1 signaling. Pain, 2010, 150, 550-560.	4.2	85
24	Low Nociceptor GRK2 Prolongs Prostaglandin E ₂ Hyperalgesia via Biased cAMP Signaling to Epac/Rap1, Protein Kinase Cîµ, and MEK/ERK. Journal of Neuroscience, 2010, 30, 12806-12815.	3.6	85
25	Resolution of inflammation-induced depression requires T lymphocytes and endogenous brain interleukin-10 signaling. Neuropsychopharmacology, 2018, 43, 2597-2605.	5.4	83
26	Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain. Journal of Clinical Investigation, 2013, 123, 5023-5034.	8.2	83
27	Induction of Î ² -Endorphin Secretion by Lymphocytes after Subcutaneous Administration of Corticotropin-Releasing Factor. Endocrinology, 1990, 126, 759-764.	2.8	75
28	Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse. Pediatric Research, 2015, 78, 520-526.	2.3	74
29	Inhibition of Mitochondrial p53 Accumulation by PFT-μ Prevents Cisplatin-Induced Peripheral Neuropathy. Frontiers in Molecular Neuroscience, 2017, 10, 108.	2.9	68
30	IL4-10 Fusion Protein Is a Novel Drug to Treat Persistent Inflammatory Pain. Journal of Neuroscience, 2016, 36, 7353-7363.	3.6	67
31	Increased Acute Inflammation, Leukotriene B4-Induced Chemotaxis, and Signaling in Mice Deficient for G Protein-Coupled Receptor Kinase 6. Journal of Immunology, 2003, 171, 6128-6134.	0.8	64
32	Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathologica Communications, 2020, 8, 36.	5.2	64
33	Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain, 2015, 156, 2184-2192.	4.2	60
34	Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain. Brain, Behavior, and Immunity, 2017, 66, 94-102.	4.1	60
35	Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain, 2019, 160, 1459-1468.	4.2	57
36	Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics, 2021, 11, 3109-3130.	10.0	57

Annemieke Kavelaars

#	Article	IF	CITATIONS
37	Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2. Science Signaling, 2015, 8, ra73.	3.6	56
38	Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget, 2018, 9, 35581-35597.	1.8	55
39	Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain, 2020, 161, 2344-2352.	4.2	55
40	Role of endogenous pro-enkephalin A-derived peptides in human T cell proliferation and monocyte IL-6 production. Journal of Neuroimmunology, 1998, 84, 53-60.	2.3	53
41	Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. Journal of Neuroimmunology, 2005, 161, 162-168.	2.3	51
42	Pharmacological inhibition of HDAC6 reverses cognitive impairment and tau pathology as a result of cisplatin treatment. Acta Neuropathologica Communications, 2018, 6, 103.	5.2	44
43	GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain, 2011, 152, 1649-1658.	4.2	43
44	Peripheral indoleamine 2,3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain, Behavior, and Immunity, 2015, 46, 147-153.	4.1	40
45	The fibroblast-derived protein PI16 controls neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5463-5471.	7.1	39
46	Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain, 2018, 159, 884-893.	4.2	38
47	A role for G protein-coupled receptor kinase 2 in mechanical allodynia. European Journal of Neuroscience, 2007, 25, 1696-1704.	2.6	37
48	Cell-specific role of histone deacetylase 6 in chemotherapy-induced mechanical allodynia and loss of intraepidermal nerve fibers. Pain, 2019, 160, 2877-2890.	4.2	37
49	Cell-specific roles of GRK2 in onset and severity of hypoxic-ischemic brain damage in neonatal mice. Brain, Behavior, and Immunity, 2010, 24, 420-426.	4.1	31
50	Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers. Psychoneuroendocrinology, 2015, 51, 534-546.	2.7	31
51	Chemotherapy accelerates age-related development of tauopathy and results in loss of synaptic integrity and cognitive impairment. Brain, Behavior, and Immunity, 2019, 79, 319-325.	4.1	31
52	CD8+ T cell–derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight, 2022, 7, .	5.0	31
53	Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiology of Pain (Cambridge, Mass), 2019, 6, 100037.	2.5	30
54	Neonatal glucocorticoid treatment: Long-term effects on the hypothalamus–pituitary–adrenal axis, immune system, and problem behavior in 14–17 year old adolescents. Brain, Behavior, and Immunity, 2015, 45, 128-138.	4.1	28

4

#	Article	IF	CITATIONS
55	Cisplatin treatment induces attention deficits and impairs synaptic integrity in the prefrontal cortex in mice. Scientific Reports, 2018, 8, 17400.	3.3	28
56	Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology, 2019, 44, 364-371.	5.4	27
57	Microglial GRK2: A novel regulator of transition from acute to chronic pain. Brain, Behavior, and Immunity, 2011, 25, 1055-1060.	4.1	24
58	CD3+ T cells are critical for the resolution of comorbid inflammatory pain and depression-like behavior. Neurobiology of Pain (Cambridge, Mass), 2020, 7, 100043.	2.5	24
59	Immune regulation of pain: Friend and foe. Science Translational Medicine, 2021, 13, eabj7152.	12.4	24
60	Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain, Behavior, and Immunity, 2021, 93, 43-54.	4.1	23
61	Identification of FAM173B as a protein methyltransferase promoting chronic pain. PLoS Biology, 2018, 16, e2003452.	5.6	22
62	Targeting the A3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice. Acta Neuropathologica Communications, 2022, 10, 11.	5.2	22
63	Pre-deployment differences in glucocorticoid sensitivity of leukocytes in soldiers developing symptoms of PTSD, depression or fatigue persist after return from military deployment. Psychoneuroendocrinology, 2015, 51, 513-524.	2.7	21
64	T Cells as Guardians of Pain Resolution. Trends in Molecular Medicine, 2021, 27, 302-313.	6.7	21
65	Bexarotene normalizes chemotherapy-induced myelin decompaction and reverses cognitive and sensorimotor deficits in mice. Acta Neuropathologica Communications, 2020, 8, 193.	5.2	17
66	Patient-reported fatigue prior to treatment is prognostic of survival in patients with acute myeloid leukemia. Oncotarget, 2018, 9, 31244-31252.	1.8	17
67	TTI-101: A competitive inhibitor of STAT3 that spares oxidative phosphorylation and reverses mechanical allodynia in mouse models of neuropathic pain. Biochemical Pharmacology, 2021, 192, 114688.	4.4	16
68	Low GRK2 Underlies Hyperalgesic Priming by Glial Cell-Derived Neurotrophic Factor. Frontiers in Pharmacology, 2018, 9, 592.	3.5	14
69	Epac1 interacts with importin β1 and controls neurite outgrowth independently of cAMP and Rap1. Scientific Reports, 2016, 6, 36370.	3.3	13
70	HDAC6 inhibition reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia homeostasis and synaptic integrity. Theranostics, 2022, 12, 603-619.	10.0	12
71	An HDAC6 inhibitor reverses chemotherapy-induced mechanical hypersensitivity via an IL-10 and macrophage dependent pathway. Brain, Behavior, and Immunity, 2022, 100, 287-296.	4.1	11
72	Associations of inflammation with symptom burden in patients with acute myeloid leukemia. Psychoneuroendocrinology, 2018, 89, 203-208.	2.7	10

#	Article	IF	CITATIONS
73	Inhibition of dual leucine zipper kinase prevents chemotherapy-induced peripheral neuropathy and cognitive impairments. Pain, 2021, 162, 2599-2612.	4.2	10
74	Targeting the Meningeal Compartment to Resolve Chemobrain and Neuropathy via Nasal Delivery of Functionalized Mitochondria. Advanced Healthcare Materials, 2022, 11, e2102153.	7.6	8
75	Stress, genetics, and immunity. Brain, Behavior, and Immunity, 2006, 20, 313-316.	4.1	6
76	GRK2 levels in myeloid cells modulate adipose-liver crosstalk in high fat diet-induced obesity. Cellular and Molecular Life Sciences, 2020, 77, 4957-4976.	5.4	5
77	Critical Role of GRK2 in the Prevention of Chronic Pain. Methods in Pharmacology and Toxicology, 2016, , 187-213.	0.2	0