Emmanuel Dartois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7754322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the possible contribution of cationic oxygenated carbon chains C <i>n</i> O+, HC <i>n</i> O+, and OC <i>n</i> O+ (<i>n</i> Â= 4–9) to the diffuse interstellar bands. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5171-5179.	1.6	0
2	Photothermal AFM-IR spectroscopy and imaging: Status, challenges, and trends. Journal of Applied Physics, 2022, 131, .	1.1	65
3	Desorption of polycyclic aromatic hydrocarbons by cosmic rays. Astronomy and Astrophysics, 2022, 663, A25.	2.1	4
4	PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars. Publications of the Astronomical Society of the Pacific, 2022, 134, 054301.	1.0	26
5	Heterogeneous nature of the carbonaceous chondrite breccia Aguas Zarcas – Cosmochemical characterization and origin of new carbonaceous chondrite lithologies. Geochimica Et Cosmochimica Acta, 2022, 334, 155-186.	1.6	7
6	Ethane clathrate hydrate infrared signatures for solar system remote sensing. Icarus, 2021, 357, 114255.	1.1	5
7	Interstellar Ices. , 2021, , 1-5.		0
8	Cosmic ray sputtering yield of interstellar ice mantles. Astronomy and Astrophysics, 2021, 647, A177.	2.1	12
9	The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth. Earth and Planetary Science Letters, 2021, 560, 116794.	1.8	38
10	Infrared spectroscopy of clathrate hydrates for planetary science: the ethylene case. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4369-4376.	1.6	4
11	Efficiency of non-thermal desorptions in cold-core conditions. Astronomy and Astrophysics, 2021, 652, A63.	2.1	26
12	Carbon dioxide clathrate hydrate formation at low temperature. Astronomy and Astrophysics, 2021, 652, A74.	2.1	3
13	First MATISSE L-band observations of HD 179218. Astronomy and Astrophysics, 2021, 652, A61.	2.1	6
14	Electronic sputtering of solid N2 by swift ions. Nuclear Instruments & Methods in Physics Research B, 2020, 485, 13-19.	0.6	4
15	Mechanochemical synthesis of aromatic infrared band carriers. Astronomy and Astrophysics, 2020, 637, A82.	2.1	7
16	Non-thermal desorption of complex organic molecules. Astronomy and Astrophysics, 2020, 634, A103.	2.1	15
17	Photon-induced desorption of larger species in UV-irradiated methane ice. Monthly Notices of the Royal Astronomical Society, 2020, 493, 821-829.	1.6	9
18	Coulomb Explosion of Polycyclic Aromatic Hydrocarbons Induced by Heavy Cosmic Rays: Carbon Chains Production Rates. Astrophysical Journal, 2020, 888, 17.	1.6	11

#	Article	IF	CITATIONS
19	Quantum modeling of the optical spectra of carbon cluster structural families and relation to the interstellar extinction UV bump. Astronomy and Astrophysics, 2020, 634, A62.	2.1	17
20	Non-thermal desorption of complex organic molecules. Astronomy and Astrophysics, 2019, 627, A55.	2.1	28
21	Nanometre-scale infrared chemical imaging of organic matter in ultra-carbonaceous Antarctic micrometeorites (UCAMMs). Astronomy and Astrophysics, 2019, 622, A160.	2.1	20
22	Release of large polycyclic aromatic hydrocarbons and fullerenes by cosmic rays from interstellar dust. Astronomy and Astrophysics, 2019, 623, A134.	2.1	16
23	Interstellar Carbon Dust. Journal of Carbon Research, 2019, 5, 80.	1.4	10
24	Hydrogen isotopic anomalies in extraterrestrial organic matter: role of cosmic ray irradiation and implications for UCAMMs. Astronomy and Astrophysics, 2019, 627, A122.	2.1	3
25	Carbonaceous nano-dust emission in proto-planetary discs: the aliphatic-aromatic components. Astronomy and Astrophysics, 2019, 623, A135.	2.1	15
26	Characterization of the organic matter and hydration state of Antarctic micrometeorites: A reservoir distinct from carbonaceous chondrites. Icarus, 2018, 306, 74-93.	1.1	20
27	Cosmic ray sputtering yield of interstellar H ₂ O ice mantles. Astronomy and Astrophysics, 2018, 618, A173.	2.1	29
28	Dome C ultracarbonaceous Antarctic micrometeorites. Astronomy and Astrophysics, 2018, 609, A65.	2.1	38
29	IGLIAS: A new experimental set-up for low temperature irradiation studies at large irradiation facilities. Review of Scientific Instruments, 2018, 89, 075105.	0.6	16
30	UV Photolysis of Hydrogenated Amorphous Carbons of Astrophysical Interest. Polycyclic Aromatic Compounds, 2017, 37, 94-100.	1.4	2
31	Modification of ices by cosmic rays and solar wind. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 062001.	0.6	56
32	Shock-wave processing of C ₆₀ in hydrogen. Astronomy and Astrophysics, 2017, 599, A42.	2.1	15
33	Spatial distribution of far-infrared rotationally excited CH ⁺ and OH emission lines in the Orion Bar photodissociation region. Astronomy and Astrophysics, 2017, 599, A20.	2.1	17
34	Swift heavy ion irradiation of interstellar dust analogues. Astronomy and Astrophysics, 2017, 599, A130.	2.1	17
35	Polyaromatic disordered carbon grains as carriers of the UV bump: Far-UV to mid-IR spectroscopy of laboratory analogs. Astronomy and Astrophysics, 2017, 607, A73.	2.1	23
36	VLT/ISAAC infrared spectroscopy of embedded high-mass YSOs in the Large Magellanic Cloud: Methanol and the 3.47 <i>14</i> m band. Astronomy and Astrophysics, 2016, 585, A107.	2.1	24

#	Article	IF	CITATIONS
37	Irradiation of nitrogen-rich ices by swift heavy ions. Astronomy and Astrophysics, 2016, 592, A99.	2.1	20
38	Mantle formation, coagulation, and the origin of cloud/core shine. Astronomy and Astrophysics, 2016, 588, A44.	2.1	49
39	VUV spectroscopy of carbon dust analogs: contribution to interstellar extinction. Astronomy and Astrophysics, 2016, 586, A106.	2.1	18
40	Mantle formation, coagulation, and the origin of cloud/core shine. Astronomy and Astrophysics, 2016, 588, A43.	2.1	30
41	Variations in cometary dust composition from <i>Giotto</i> to <i>Rosetta</i> , clues to their formation mechanisms. Monthly Notices of the Royal Astronomical Society, 2016, 462, S323-S330.	1.6	28
42	Early Mars volcanic sulfur storage in the upper cryosphere and formation ofÂtransient SO ₂ â€rich atmospheres during the Hesperian. Meteoritics and Planetary Science, 2016, 51, 2226-2233.	0.7	3
43	Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. Astronomy and Astrophysics, 2016, 591, A107.	2.1	2
44	Ion irradiation of the Murchison meteorite: Visible to mid-infrared spectroscopic results. Astronomy and Astrophysics, 2015, 577, A41.	2.1	59
45	Radiation effects in astrophysical ices. Journal of Physics: Conference Series, 2015, 629, 012008.	0.3	19
46	Swift heavy ion modifications of astrophysical water ice. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 472-476.	0.6	16
47	Visibleâ€∢scp>IR and Raman microspectroscopic investigation of three Itokawa particles collected by Hayabusa: Mineralogy and degree of space weathering based on nondestructive analyses. Meteoritics and Planetary Science, 2015, 50, 1562-1576.	0.7	24
48	Interstellar and interplanetary solids in the laboratory. Proceedings of the International Astronomical Union, 2015, 11, 416-419.	0.0	1
49	The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites. Proceedings of the International Astronomical Union, 2015, 11, 253-256.	0.0	2
50	Vacuum ultraviolet of hydrogenated amorphous carbons. Astronomy and Astrophysics, 2015, 584, A123.	2.1	34
51	Hydrogen isotopic fractionation in secondary ion mass spectrometry using polyatomic ions. International Journal of Mass Spectrometry, 2015, 393, 17-24.	0.7	4
52	Compaction of porous ices rich in water by swift heavy ions. Icarus, 2015, 250, 222-229.	1.1	38
53	Heavy ion irradiation of crystalline water ice. Astronomy and Astrophysics, 2015, 576, A125.	2.1	67
54	Formation of analogs of cometary nitrogen-rich refractory organics from thermal degradation of tholin and HCN polymer. Icarus, 2015, 250, 53-63.	1.1	23

Emmanuel Dartois

#	Article	IF	CITATIONS
55	Stratospheric benzene and hydrocarbon aerosols detected in Saturn's auroral regions. Astronomy and Astrophysics, 2015, 580, A89.	2.1	19
56	CO ₂ -SO ₂ clathrate hydrate formation on early Mars. BIO Web of Conferences, 2014, 2, 01004.	0.1	0
57	Interstellar ice analogs: band strengths of H ₂ 0, CO ₂ , CH ₃ OH, and NH ₃ in the far-infrared region. Astronomy and Astrophysics, 2014, 565, A108.	2.1	25
58	Clathrate hydrate FTIR spectroscopy - infrared signatures, astrophysical significance. BIO Web of Conferences, 2014, 2, 03005.	0.1	1
59	Two refractory Wild 2 terminal particles from a carrotâ€shaped track characterized combining <scp>MIR</scp> / <scp>FIR</scp> /Raman microspectroscopy and <scp>FE</scp> â€ <scp>SEM</scp> / <scp>EDS</scp> analyses. Meteoritics and Planetary Science, 2014, 49, 550-575.	0.7	20
60	Origin of insoluble organic matter in type 1 and 2 chondrites: New clues, new questions. Geochimica Et Cosmochimica Acta, 2014, 136, 80-99.	1.6	68
61	Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies. Icarus, 2014, 237, 278-292.	1.1	60
62	Rotationally resolved IR spectroscopy of hexamethylenetetramine (HMT) C ₆ N ₄ H ₁₂ . Astronomy and Astrophysics, 2014, 561, A109.	2.1	15
63	Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. Astronomy and Astrophysics, 2014, 569, A119.	2.1	56
64	Comparison of UV and high-energy ion irradiation of methanol:ammonia ice. Astronomy and Astrophysics, 2014, 566, A93.	2.1	43
65	Interstellar and interplanetary carbonaceous solids in the laboratory. Geochemical Journal, 2014, 48, 511-518.	0.5	6
66	UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line. Icarus, 2013, 224, 243-252.	1.1	103
67	Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus, 2013, 223, 534-543.	1.1	85
68	Prebiotic chemistry in icy grain mantles in space. An experimental and observational approach. Chemical Society Reviews, 2013, 42, 2173.	18.7	36
69	CO2–SO2 clathrate hydrate formation on early Mars. Icarus, 2013, 223, 878-891.	1.1	18
70	Swift heavy ion irradiation of water ice from MeV to GeV energies. Astronomy and Astrophysics, 2013, 557, A97.	2.1	58
71	Laboratory Analogues of the Carbonaceous Dust: Synthesis of Soot-like Materials and their Properties. Proceedings of the International Astronomical Union, 2012, 10, 717-719.	0.0	0
72	Nanostructuration of polyaromatic analogues of the carbonaceous dust. EAS Publications Series, 2012, 58, 399-404.	0.3	1

#	Article	IF	CITATIONS
73	Effects of cosmic rays on hydrocarbon interstellar dust. EAS Publications Series, 2012, 58, 395-398.	0.3	1
74	Clathrate hydrates : ftir spectroscopy for astrophysical remote detection. EAS Publications Series, 2012, 58, 219-224.	0.3	4
75	Infrared emission from photo-excited gaseous benzene: detection with a new home-made spectrometer. EAS Publications Series, 2012, 58, 379-384.	0.3	2
76	The deep 3.4Â <i>μ</i> m interstellar absorption feature toward the IRAS 18511+0146 cluster. Astronomy and Astrophysics, 2012, 537, A27.	2.1	13
77	Nanostructuration of carbonaceous dust as seen through the positions of the 6.2 and 7.7 <i>$\hat{1}/4$</i> m AlBs. Astronomy and Astrophysics, 2012, 548, A40.	2.1	62
78	Hydrogen sulfide clathrate hydrate FTIR spectroscopy: A help gas for clathrate formation in the Solar System?. Icarus, 2012, 220, 427-434.	1.1	12
79	Spatial variation of the cooling lines in the Orion Bar from <i>Herschel</i> /PACS. Astronomy and Astrophysics, 2012, 538, A37.	2.1	42
80	Ion irradiation of carbonaceous interstellar analogues. Astronomy and Astrophysics, 2011, 529, A146.	2.1	69
81	CO clathrate hydrate: Near to mid-IR spectroscopic signatures. Icarus, 2011, 212, 950-956.	1.1	14
82	Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM–EDX study of IDP L2021C5: Clues to its origin. Icarus, 2011, 212, 896-910.	1.1	53
83	Observations of Interstellar Carbon Compounds. EAS Publications Series, 2011, 46, 381-391.	0.3	5
84	Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6–0.4 (W31C), W49N, and W51. Astronomy and Astrophysics, 2010, 521, L16.	2.1	77
85	First detection of the methylidyne cation (CH ⁺) fundamental rotational line with the <i>Herschel</i> /SPIRE FTS. Astronomy and Astrophysics, 2010, 518, L117.	2.1	35
86	Strong absorption by interstellar hydrogen fluoride: <i>Herschel</i> /HIFI observations of the sight-line to G10.6–0.4 (W31C). Astronomy and Astrophysics, 2010, 518, L108.	2.1	90
87	Interstellar OH ⁺ , H ₂ O ⁺ and H ₃ O ⁺ along the sight-line to G10.6–0.4. Astronomy and Astrophysics, 2010, 518, L110.	2.1	155
88	<i>Herschel</i> -SPIRE spectroscopy of the DR21 molecular cloud core. Astronomy and Astrophysics, 2010, 518, L114.	2.1	15
89	SPIRE spectroscopy of the prototypical Orion Bar photodissociation region. Astronomy and Astrophysics, 2010, 518, L116.	2.1	59
90	<i>Herschel</i> -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale. Astronomy and Astrophysics, 2010, 518, L104.	2.1	136

#	Article	IF	CITATIONS
91	Excitation and abundance of C ₃ in star forming cores. Astronomy and Astrophysics, 2010, 521, L13.	2.1	30
92	CH ⁺ (1–0) and ¹³ CH ⁺ (1–0) absorption lines in the direction of massive star-forming regions. Astronomy and Astrophysics, 2010, 521, L15.	2.1	49
93	Laboratory simulation of heavy-ion cosmic-ray interaction with condensed CO. Astronomy and Astrophysics, 2010, 512, A71.	2.1	71
94	<i>Herschel</i> /HIFI measurements of the ortho/para ratio in water towards SagittariusÂB2(M) and W31C. Astronomy and Astrophysics, 2010, 521, L26.	2.1	57
95	Nitrogen hydrides in interstellar gas. Astronomy and Astrophysics, 2010, 521, L45.	2.1	68
96	Infrared study of astrophysical ice analogues irradiated by swift nickel ions. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2960-2963.	0.6	5
97	Physical properties of the Sh2-104 H llÂregion as seen by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L80.	2.1	20
98	<i>Herschel</i> /HIFI observations of interstellar OH ⁺ and H ₂ O ⁺ towards W49N: a probe of diffuse clouds with a small molecular fraction. Astronomy and Astrophysics, 2010, 521, L10.	2.1	143
99	Evolution of interstellar dust with <i>Herschel</i> . First results in the photodissociation regions of NGC 7023. Astronomy and Astrophysics, 2010, 518, L96.	2.1	43
100	The physical properties of the dust in the RCWÂ120 H ii region asÂseen by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L99.	2.1	51
101	Detection of hydrogen fluoride absorption in diffuse molecular clouds with <i>Herschel</i> /HIFI: an ubiquitous tracer of molecular gas. Astronomy and Astrophysics, 2010, 521, L12.	2.1	92
102	AIFU: An Antarctic Integral Field Unit for Near-Infrared spectro-imaging. EAS Publications Series, 2010, 40, 203-206.	0.3	0
103	Methane clathrate hydrate infrared spectrum. Astronomy and Astrophysics, 2010, 514, A49.	2.1	33
104	Photoluminescence of hydrogenated amorphous carbons. Astronomy and Astrophysics, 2010, 519, A39.	2.1	29
105	Clathrates hydrates FTIR spectroscopy: infrared signatures and their astrophysical significance. Molecular Physics, 2010, 108, 2273-2278.	0.8	3
106	<i>Herschel</i> -SPIRE spectroscopy of G29.96-0.02: Fitting the full SED. Astronomy and Astrophysics, 2010, 518, L82.	2.1	15
107	Comparison of the Raman spectra of ion irradiated soot and collected extraterrestrial carbon. Icarus, 2009, 200, 323-337.	1.1	55
108	Ethane aerosol phase evolution in Titan's atmosphere. Icarus, 2009, 199, 564-567.	1.1	11

#	Article	IF	CITATIONS
109	Heavy ion irradiation of condensed CO\$mathsf{_{2}}\$: sputtering and molecule formation. Astronomy and Astrophysics, 2009, 502, 599-603.	2.1	68
110	A tracer of organic matter of prebiotic interest in space, made from UV and thermal processing of ice mantles. Astronomy and Astrophysics, 2009, 494, 109-115.	2.1	20
111	Carbon dioxide clathrate hydrate FTIR spectrum. Astronomy and Astrophysics, 2009, 504, 869-873.	2.1	40
112	Irradiation effects in CO and CO ₂ ices induced by swift heavy Ni ions at 46 MeV and 537 MeV. Proceedings of the International Astronomical Union, 2009, 5, 428-429.	0.0	1
113	Heavy ion irradiation of astrophysical ice analogs. Proceedings of the International Astronomical Union, 2009, 5, 29-32.	0.0	0
114	The 6.2 \$sf mu{m m}\$ band position in laboratory and astrophysical spectra: a tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust. Astronomy and Astrophysics, 2008, 490, 665-672.	2.1	103
115	Infrared analysis of CO ice particles in the aerosol phase. Journal of Chemical Physics, 2008, 128, 154715.	1.2	12
116	Ion irradiation effects on sooting flames by-products. Proceedings of the International Astronomical Union, 2008, 4, 435-436.	0.0	0
117	Laboratory analogues of hydrocarbonated interstellar nanograins. Proceedings of the International Astronomical Union, 2008, 4, 393-394.	0.0	1
118	The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI): instrument and pre-launch testing. Proceedings of SPIE, 2008, , .	0.8	17
119	Methane clathrate hydrate FTIR spectrum. Astronomy and Astrophysics, 2008, 490, L19-L22.	2.1	44
120	Characterization of the carbon component in cometary Stardust samples by means of infrared and Raman spectroscopy. Astronomy and Astrophysics, 2008, 485, 743-751.	2.1	28
121	IRASÂ08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs. Astronomy and Astrophysics, 2007, 463, 635-640.	2.1	85
122	Enantiomeric separation of complex organic molecules produced from irradiation of interstellar/circumstellar ice analogs. Advances in Space Research, 2007, 39, 400-404.	1.2	47
123	Carbonaceous dust grains in luminous infrared galaxies. Astronomy and Astrophysics, 2007, 476, 1235-1242.	2.1	63
124	VLT-ISAAC 3–5 μm spectroscopy of embedded young low-mass stars. Astronomy and Astrophysics, 2006, 449, 251-265.	2.1	31
125	Infrared detection of gas phase formaldehyde towards the high mass protostar W33A. Astronomy and Astrophysics, 2006, 447, 963-969.	2.1	17
126	The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs. Astronomy and Astrophysics, 2006, 457, 741-751.	2.1	73

#	Article	IF	CITATIONS
127	Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon. Astronomy and Astrophysics, 2006, 459, 147-159.	2.1	66
128	Spectroscopic evidence of grain ice mantle growth in YSOs. Astronomy and Astrophysics, 2006, 445, 959-970.	2.1	17
129	Ultraviolet photoproduction of ISM dust. Astronomy and Astrophysics, 2005, 432, 895-908.	2.1	110
130	The Spatial Distribution of Ices in Star-Forming Regions. Proceedings of the International Astronomical Union, 2005, 1, 319.	0.0	2
131	The Ice Survey Opportunity of ISO. Space Science Reviews, 2005, 119, 293-310.	3.7	113
132	FTIR analysis of the organics in IDPs: Comparison with the IR spectra of the diffuse interstellar medium. Astronomy and Astrophysics, 2005, 433, 979-995.	2.1	61
133	The Ice Survey Opportunity of ISO. , 2005, , 293-310.		7
134	Spitzer's large CO2 ice detection toward the L723 classÂ0 object. Astronomy and Astrophysics, 2005, 444, L57-L60.	2.1	8
135	Tentative identification of urea and formamide in ISO-SWS infrared spectra of interstellar ices. Astronomy and Astrophysics, 2004, 416, 165-169.	2.1	112
136	Organic matter in Seyfert 2 nuclei: Comparison with our Galactic center lines of sight. Astronomy and Astrophysics, 2004, 423, 549-558.	2.1	58
137	Diffuse interstellar medium organic polymers. Astronomy and Astrophysics, 2004, 423, L33-L36.	2.1	87
138	Molecular complexes theoretical computations between methanol and carbon dioxide and their implications in the interstellar ice mantles. Astronomy and Astrophysics, 2004, 416, 801-810.	2.1	10
139	Mapping ices in protostellar environments on 1000 AU scales. Astronomy and Astrophysics, 2004, 426, 925-940.	2.1	133
140	A \$mathsf{3{-}5~mu}\$m VLT spectroscopic survey of embedded young low mass stars I. Astronomy and Astrophysics, 2003, 408, 981-1007.	2.1	211
141	Search for solid HDO in low-mass protostars. Astronomy and Astrophysics, 2003, 410, 897-904.	2.1	54
142	Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient. Astronomy and Astrophysics, 2003, 399, 773-787.	2.1	180
143	Revisiting the solid HDO/H\$_mathsf{2}\$O abundances. Astronomy and Astrophysics, 2003, 399, 1009-1020.	2.1	50
144	Detection of abundant solid methanol toward young low mass stars. Astronomy and Astrophysics, 2003. 404. L17-L20.	2.1	88

#	Article	IF	CITATIONS
145	Combined VLT ISAAC/ISO SWS spectroscopy of two protostellar sources. Astronomy and Astrophysics, 2002, 394, 1057-1068.	2.1	73
146	Doubly deuterated formaldehyde in star-forming regions: an observational approach. Planetary and Space Science, 2002, 50, 1205-1213.	0.9	47
147	Bright CO ro-vibrational emission lines in the class I source GSS 30 IRS1. Astronomy and Astrophysics, 2002, 393, 585-595.	2.1	17
148	Detection of abundant solid CO in the disk around CRBR 2422.8-3423. Astronomy and Astrophysics, 2002, 394, L27-L30.	2.1	31
149	Methylpolyynes and Small Hydrocarbons in CRL 618. Astrophysical Journal, 2001, 546, L127-L130.	1.6	122
150	Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 669-684.	2.0	28
151	Electronic spectroscopy of a cyclopentafused PAH cation, the fluorene+: comparison between gas phase and matrix spectra. Chemical Physics Letters, 2001, 339, 64-70.	1.2	17
152	Search for NH3ice in cold dust envelopes around YSOs. Astronomy and Astrophysics, 2001, 365, 144-156.	2.1	95
153	Windows Through the Dusty Disks Surrounding the Youngest Low-Mass Protostellar Objects. Science, 2000, 288, 649-652.	6.0	13
154	ISO observations of interstellar ices. Advances in Space Research, 1998, 21, 11-14.	1.2	4
155	ISO Observations of Interstellar Ices and Implications for Comets. Icarus, 1997, 130, 1-15.	1.1	61
156	Evidence for episodic warm outflowing CO gas from the intermediate-mass young stellar object IRAS 08470-4321a~ Monthly Notices of the Royal Astronomical Society, 0, , no-no.	1.6	7