Ricardo José Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7754099/publications.pdf

Version: 2024-02-01

47	919	14	29
papers	citations	h-index	g-index
50	50	50	926
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer's disease. Computer Methods and Programs in Biomedicine, 2022, 214, 106581.	2.6	8
2	A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer's diagnosis. Expert Systems With Applications, 2022, 195, 116622.	4.4	17
3	Brain MR image classification for Alzheimer's disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-Gabor filter responses. Neurocomputing, 2021, 419, 126-135.	3.5	33
4	Detecting cells in intravital video microscopy using a deep convolutional neural network. Computers in Biology and Medicine, 2021, 129, 104133.	3.9	7
5	Assessment of Linear and Non-linear Feature Projections for the Classification of 3-D MR Images on Cognitively Normal, Mild Cognitive Impairment and Alzheimer's Disease. Lecture Notes in Computer Science, 2021, , 18-33.	1.0	O
6	Classification of Brain MR Images for the Diagnosis of Alzheimer's Disease Based on Features Extracted from the Three Main Brain Tissues. Smart Innovation, Systems and Technologies, 2021, , 212-219.	0.5	0
7	A periodized training attenuates thigh intermuscular fat and improves muscle quality in patients with knee osteoarthritis: results from a randomized controlled trial. Clinical Rheumatology, 2020, 39, 1265-1275.	1.0	20
8	Detector of 3-D salient points based on the dual-tree complex wavelet transform for the positioning of hippocampi meshes in magnetic resonance images. Journal of Neuroscience Methods, 2020, 341, 108789.	1.3	0
9	Classification of Active Multiple Sclerosis Lesions in MRI Without the Aid of Gadolinium-Based Contrast Using Textural and Enhanced Features from FLAIR Images. Lecture Notes in Computer Science, 2020, , 60-74.	1.0	0
10	Automatic Positioning of Hippocampus Deformable Mesh Models in Brain MR Images Using a Weighted 3D-SIFT Technique. Lecture Notes in Computer Science, 2020, , 75-90.	1.0	0
11	Exploring Deep Convolutional Neural Networks as Feature Extractors for Cell Detection. Lecture Notes in Computer Science, 2020, , 91-103.	1.0	1
12	Detecting and tracking leukocytes in intravital video microscopy using a Hessian-based spatiotemporal approach. Multidimensional Systems and Signal Processing, 2019, 30, 815-839.	1.7	4
13	Multiple sclerosis lesion enhancement and white matter region estimation using hyperintensities in FLAIR images. Biomedical Signal Processing and Control, 2019, 49, 338-348.	3.5	1
14	Detection and Classification of Hippocampal Structural Changes in MR Images as a Biomarker for Alzheimer's Disease. Lecture Notes in Computer Science, 2018, , 406-422.	1.0	1
15	Midsaggital Plane Detection in Magnetic Resonance Images Using Phase Congruency, Hessian Matrix and ÂSymmetry Information: A Comparative Study. Lecture Notes in Computer Science, 2018, , 245-260.	1.0	2
16	Automatic Segmentation and Quantification of Thigh Tissues in CT Images. Lecture Notes in Computer Science, 2018, , 261-276.	1.0	4
17	Construction and Application of a Probabilistic Atlas of 3D Landmark Points for Initialization of Hippocampus Mesh Models in Brain MR Images. Lecture Notes in Computer Science, 2018, , 310-322.	1.0	1
18	Detection of the midsagittal plane in MR images using a sheetness measure from eigenanalysis of local 3D phase congruency responses. , 2016, , .		5

#	Article	IF	CITATIONS
19	Initialization of deformable models in 3D magnetic resonance images guided by automatically detected phase congruency point landmarks. Pattern Recognition Letters, 2016, 79, 1-7.	2.6	6
20	Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images. Computers in Biology and Medicine, 2016, 73, 10-23.	3.9	12
21	DetecÃsão de leucócitos em imagens de vÃdeo de microscopia intravital usando a técnica de congruência de fase. Revista De Informatica Teorica E Aplicada, 2016, 23, 33.	0.2	1
22	Detection of Leukocytes in Intravital Video Microscopy Based on the Analysis of Hessian Matrix Eigenvalues., 2015,,.		2
23	Automatic detection of motion blur in intravital video microscopy image sequences via directional statistics of log-Gabor energy maps. Medical and Biological Engineering and Computing, 2015, 53, 151-163.	1.6	7
24	Deconvolução Cega Aplicada à Correção de Artefatos de Movimento em Imagens de VÃdeo de Microscopia Intravital para Detecção Automática de Leucócitos. Revista De Informatica Teorica E Aplicada, 2015, 22, 52.	0.2	0
25	Do multiple sclerosis lesions affect the outcome of magnetic resonance image registration?. Revista De Informatica Teorica E Aplicada, 2014, 21, 47.	0.2	O
26	Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images. Medical and Biological Engineering and Computing, 2013, 51, 71-88.	1.6	12
27	Neuromuscular Electrical Stimulation as a Method to Maximize the Beneficial Effects of Muscle Stem Cells Transplanted into Dystrophic Skeletal Muscle. PLoS ONE, 2013, 8, e54922.	1.1	41
28	Detection of point landmarks in 3D medical images via phase congruency model. Journal of the Brazilian Computer Society, 2011, 17, 117-132.	0.8	10
29	The Synergistic Effect of Treadmill Running on Stem-Cell Transplantation to Heal Injured Skeletal Muscle. Tissue Engineering - Part A, 2010, 16, 839-849.	1.6	70
30	Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: A preliminary investigation in terms of identification and segmentation. Medical Physics, 2010, 37, 1722-1736.	1.6	54
31	Functional Overloading of Dystrophic Mice Enhances Muscle-Derived Stem Cell Contribution to Muscle Contractile Capacity. Archives of Physical Medicine and Rehabilitation, 2009, 90, 66-73.	0.5	20
32	Can Bilateral Asymmetry Analysis of Breast MR Images Provide AdditionalÂÂInformation for Detection of Breast Diseases?., 2008, , .		3
33	Analysis of bilateral asymmetry in mammograms using directional, morphological, and density features. Journal of Electronic Imaging, 2007, 16, 013003.	0.5	16
34	Real-time detection of steam in video images. Pattern Recognition, 2007, 40, 1148-1159.	5.1	52
35	Digital Radiographic Image Denoising Via Wavelet-Based Hidden Markov Model Estimation. Journal of Digital Imaging, 2005, 18, 154-167.	1.6	25
36	Identification of the breast boundary in mammograms using active contour models. Medical and Biological Engineering and Computing, 2004, 42, 201-208.	1.6	87

#	Article	IF	CITATIONS
37	Segmentation of the fibro-glandular disc in mammogrms using Gaussian mixture modelling. Medical and Biological Engineering and Computing, 2004, 42, 378-387.	1.6	58
38	Automatic Identification of the Pectoral Muscle in Mammograms. IEEE Transactions on Medical Imaging, 2004, 23, 232-245.	5.4	175
39	Segmentation of multiple sclerosis lesions using support vector machines. , 2003, , .		15
40	Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Transactions on Medical Imaging, 2001, 20, 953-964.	5.4	124
41	<title>Comparative of shape and texture features in classifications of breast masses in digitized mammograms</title> ., 2000, , .		2
42	Computerized classification of breast lesions: shape and texture analysis using an artificial neural network., 1999,,.		2
43	Detection and Characterization of Mammographic Masses by Artificial Neural Network. Computational Imaging and Vision, 1998, , 489-490.	0.6	14
44	Comparative Evaluation of Statistical Pattern Recognition Techniques for the Classification of Breast Lesions. Computational Imaging and Vision, 1998, , 249-252.	0.6	0
45	<title>Computer simulation of the geometric unsharpness effect on radiologic images <math display="inline"></math> /title>. , 1996, 2847, 609.</td><td></td><td>2</td></tr><tr><td>46</td><td>Detection and characterization of microcalcifications in mammographic images. , 0, , .</td><td></td><td>0</td></tr><tr><td>47</td><td>Computerized simulation X-ray focus appraisement. , 0, , .</td><td></td><td>1</td></tr></tbody></table></title>		