List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7754023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SwissFEL: The Swiss X-ray Free Electron Laser. Applied Sciences (Switzerland), 2017, 7, 720.	2.5	272
2	A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nature Photonics, 2020, 14, 748-754.	31.4	140
3	Pressure-dependent N2 Q-branch fs-CARS measurements. Journal of Raman Spectroscopy, 2002, 33, 861-865.	2.5	48
4	Gas phase diagnostics by laser-induced gratings I. theory. Applied Physics B: Lasers and Optics, 2005, 81, 101-111.	2.2	44
5	Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering. Journal of Chemical Physics, 2003, 118, 8223-8233.	3.0	41
6	Determination of rotational constants in a molecule by femtosecond four-wave mixing. Journal of Raman Spectroscopy, 2000, 31, 71-76.	2.5	40
7	Femtosecond photoionization of (H2O)n and (D2O)n clusters. Journal of Chemical Physics, 1999, 111, 512-518.	3.0	32
8	Gas-phase diagnostics by laser-induced gratings II. Experiments. Applied Physics B: Lasers and Optics, 2005, 81, 113-129.	2.2	31
9	Shedding light on a dark state: The energetically lowest quintet state of C\$_2\$2. Journal of Chemical Physics, 2011, 134, 044302.	3.0	28
10	Picosecond investigation of the collisional deactivation of OH A^2Σ^+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame. Applied Optics, 1998, 37, 3354.	2.1	27
11	Perturbation-facilitated detection of the first quintet-quintet band in C2. Journal of Chemical Physics, 2015, 142, 094313.	3.0	23
12	Multiplex spectroscopy of stable and transient species in a molecular beam. Journal of Raman Spectroscopy, 2007, 38, 1022-1031.	2.5	19
13	Deperturbation study of the state of C2 by applying degenerate and two-color resonant four-wave mixing. Journal of Molecular Spectroscopy, 2010, 262, 69-74.	1.2	18
14	Degenerate and two-color resonant four-wave mixing applied to the rotational characterization of high-lying vibrational states of formaldehyde ($\tilde{A}f$,1A2). Journal of Raman Spectroscopy, 2006, 37, 376-383.	2.5	17
15	Electronic spectra of radicals in a supersonic slit-jet discharge by degenerate and two-color four-wave mixing. Physical Chemistry Chemical Physics, 2008, 10, 136-141.	2.8	17
16	Degenerate and twoâ€color resonant fourâ€wave mixing of C ₂ ^{â^'} in a molecular beam environment. Journal of Raman Spectroscopy, 2010, 41, 853-858.	2.5	17
17	Stimulated emission pumping by two-color resonant four-wave mixing: rotational characterization of vibrationally excited HCO (XIf 2 Aâ \in ²). Journal of Raman Spectroscopy, 2003, 34, 1037-1044.	2.5	16
18	Photo-fragment excitation spectroscopy (PHOFEX) by DFWM and LIF: propensities for H2CO ? HCO + H near the So threshold. Journal of Raman Spectroscopy, 2005, 36, 109-115.	2.5	16

#	Article	IF	CITATIONS
19	Detection of vibrational overtone excitation in methane by laserâ€induced grating spectroscopy. Journal of Raman Spectroscopy, 2008, 39, 730-738.	2.5	16
20	Perturbation facilitated two-color four-wave-mixing spectroscopy of C3. Journal of Chemical Physics, 2013, 139, 154203.	3.0	15
21	Nonlinear XUV-optical transient grating spectroscopy at the Si L2,3–edge. Applied Physics Letters, 2019, 114, 181101.	3.3	15
22	Direct absorption transitions to highly excited polyads 8, 10, and 12 of methane. Physical Review A, 2010, 82, .	2.5	13
23	Degenerate Four-Wave Mixing of S2and OH in Fuel-Rich Propane/Air/ S02Flames. Combustion Science and Technology, 1996, 119, 375-393.	2.3	12
24	State-resolved collisional energy transfer of OH, NH and H2CO by two-color resonant four-wave mixing spectroscopy. Journal of Raman Spectroscopy, 2002, 33, 925-933.	2.5	11
25	Comparative study of degenerate four-wave mixing and cavity ringdown signal intensities of formaldehyde in a molecular beam. Journal of Raman Spectroscopy, 2006, 37, 680-688.	2.5	11
26	Opportunities for Chemistry at the SwissFEL X-ray Free Electron Laser. Chimia, 2017, 71, 299.	0.6	11
27	Experimental and theoretical investigation of the vibrational band structure of the 1 Îu5â^1 Îg5 high-spir system of C2. Journal of Chemical Physics, 2017, 146, 114309.	3.0	11
28	Collision-induced resonances in two-color resonant four-wave mixing spectra. Physical Review A, 2000, 63, .	2.5	10
29	New trends and recent advances in coherent Raman microscopy and nonlinear optical spectroscopy: introduction to the special issue. Journal of Raman Spectroscopy, 2009, 40, 712-713.	2.5	9
30	Polarization―and timeâ€resolved DFWM spectroscopy of the A ² Σ ⁺ â^' X ² Π(0,0) band transitions of nascent OH radicals generated by 266 nm laser photolysis of H ₂ O ₂ . Journal of Raman Spectroscopy, 2013, 44, 1349-1355.	2.5	9
31	Unraveling the electronic structure of transition metal dimers using resonant fourâ€wave mixing. Journal of Raman Spectroscopy, 2016, 47, 425-431.	2.5	9
32	New experimental and theoretical assessment of the dissociation energy of C ₂ . Molecular Physics, 2019, 117, 1645-1652.	1.7	9
33	Title is missing!. Flow, Turbulence and Combustion, 2000, 64, 183-196.	2.6	7
34	Rotationally Resolved Ground State Vibrational Levels of HC2S Studied by Two-Color Resonant Four-Wave Mixing. Journal of Physical Chemistry A, 2010, 114, 3329-3333.	2.5	6
35	Non-linear Raman spectroscopy 75 years after the Nobel Prize for the discovery of Raman scattering and 40 years after the first CARS experiments. Journal of Raman Spectroscopy, 2005, 36, 92-94.	2.5	5
36	Advances in nonlinear optical spectroscopies: a historical perspective of developments and applications presented at ECONOS. Journal of Raman Spectroscopy, 2016, 47, 1111-1123.	2.5	5

#	Article	IF	CITATIONS
37	Rovibrational Characterization of High-Lying Electronic States of Cu ₂ by Double-Resonant Nonlinear Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 8448-8452.	2.5	5
38	Identification of a new low energy 1u state in dicopper with resonant four-wave mixing. Journal of Chemical Physics, 2017, 147, 214308.	3.0	5
39	Spectroscopic disentanglement of the quantum states of highly excited Cu2. Nature Communications, 2019, 10, 3270.	12.8	5
40	Line-space description of resonant four-wave mixing: Theory for isotropic molecular states. Journal of Chemical Physics, 2014, 140, 194302.	3.0	4
41	Observation of a gerade symmetry state of Cu 2 using twoâ€color resonant fourâ€wave mixing. Journal of Raman Spectroscopy, 2020, 51, 1970-1976.	2.5	4
42	Accurate ground state potential of Cu2 up to the dissociation limit by perturbation assisted double-resonant four-wave mixing. Journal of Chemical Physics, 2020, 153, 244305.	3.0	4
43	New developments in non-linear optical spectroscopy. Journal of Raman Spectroscopy, 2006, 37, 630-632.	2.5	3
44	The ËœA ² Î _{3/2} â^'ËœX ² Î _{3/2} electronic transition of HC ₄ S isotopologues. Molecular Physics, 2008, 106, 2709-2715.	² 1.7	3
45	Dissection of dispersed offâ€resonant femtosecond degenerate fourâ€wave mixing of O ₂ . Journal of Raman Spectroscopy, 2011, 42, 1848-1853.	2.5	3
46	ECONOS in the epoch of CARS renaissance. Journal of Raman Spectroscopy, 2007, 38, 960-962.	2.5	2
47	Rotationally resolved spectroscopy and dynamics of the 3px 1A2 Rydberg state of formaldehyde. Physical Chemistry Chemical Physics, 2010, 12, 15592.	2.8	2
48	Determination of rotational constants in a molecule by femtosecond fourâ€wave mixing. Journal of Raman Spectroscopy, 2000, 31, 71-76.	2.5	2
49	Preface to the second special issue on non-linear Raman spectroscopy and related techniques. Journal of Raman Spectroscopy, 2003, 34, 919-921.	2.5	1
50	New developments in nonlinear spectroscopy: ECONOS meeting in St. Petersburg. Journal of Raman Spectroscopy, 2008, 39, 692-693.	2.5	1
51	Development and applications of nonlinear optical spectroscopy – 9th ECONOS / 29th ECW meeting in Bremen, Germany. Journal of Raman Spectroscopy, 2011, 42, 1825-1827.	2.5	1
52	Development and applications of nonlinear optical spectroscopy: 10th ECONOS/30th ECW meeting in Enschede, The Netherlands. Journal of Raman Spectroscopy, 2012, 43, 593-594.	2.5	1
53	Development and applications of nonlinear optical spectroscopy: the joint 11th ECONOS and 31st ECW meeting in Aberdeen, Scotland. Journal of Raman Spectroscopy, 2013, 44, 1317-1318.	2.5	1
54	Development and applications of nonlinear optical spectroscopy: 11th ECONOS/32nd ECW meeting in Exeter (UK). Journal of Raman Spectroscopy, 2014, 45, 487-488.	2.5	1

#	ARTICLE	IF	CITATIONS
55	The ion-pair character of the B <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si38.svg"><mml:mrow><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mstate 111326.<="" 2020,="" 372,="" cuag.="" journal="" molecular="" of="" spectroscopy,="" td=""><td>ıml:ɛno>+‹</td><td>:/mtml:mo><</td></mstate></mml:msup></mml:mrow></mml:math>	ım l:ɛ no>+‹	:/mtml:mo><
56	Determination of rotational constants in a molecule by femtosecond four-wave mixing. , 2000, 31, 71.		1
57	Resonant four-wave mixing spectra: A fresh look at photodissociation dynamics. Journal of Physics: Conference Series, 2014, 548, 012016.	0.4	0
58	Helicity-induced shapes of resonant four-wave mixing responses from photofragments. Journal of Physics: Conference Series, 2017, 810, 012019.	0.4	0
59	Rovibrational investigation of a new high-lying Ou+ state of Cu ₂ by using two-color resonant four-wave-mixing spectroscopy. Journal of Chemical Physics, 2022, 156, 184305.	3.0	0