
Ian Vj Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7753567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Medical student misconceptions in cardiovascular physiology. American Journal of Physiology - Advances in Physiology Education, 2021, 45, 241-249.	0.8	2
2	Using lectures to identify student misconceptions: a study on the paradoxical effects of hyperkalemia on vascular smooth muscle. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 15-20.	0.8	3
3	Effect of a small-group, active learning, tutorial-based, in-course enrichment program on student performance in medical physiology. American Journal of Physiology - Advances in Physiology Education, 2019, 43, 339-344.	0.8	6
4	Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Reviews in the Neurosciences, 2019, 30, 339-358.	1.4	84
5	Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer's Disease (AD): A Meta-Analysis of CSF Markers. Current Alzheimer Research, 2018, 15, 164-181.	0.7	49
6	Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid. ACS Chemical Neuroscience, 2016, 7, 367-377.	1.7	22
7	Small Molecules and Alzheimer's Disease: Misfolding, Metabolism and Imaging. Current Alzheimer Research, 2015, 12, 445-461.	0.7	21
8	Glycogen and amyloid-beta: key players in the shift from neuronal hyperactivity to hypoactivity observed in Alzheimer′s disease?. Neural Regeneration Research, 2015, 10, 1023.	1.6	17
9	Adenosine Triphosphate (ATP) Reduces Amyloid-β Protein Misfolding in vitro. Journal of Alzheimer's Disease, 2014, 41, 561-574.	1.2	25
10	Islet Amyloid Polypeptide (IAPP): A Second Amyloid in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 928-940.	0.7	76
11	Amyloid β peptides modify the expression of antioxidant repair enzymes and a potassium channel in the septohippocampal system. Neurobiology of Aging, 2013, 34, 2071-2076.	1.5	22
12	The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and herbivoreâ€induced plant volatile production for defense against insect attack. Plant Journal, 2013, 74, 59-73.	2.8	217
13	Ruthenium Red Colorimetric and Birefringent Staining of Amyloid-β Aggregates in Vitro and in Tg2576 Mice. ACS Chemical Neuroscience, 2013, 4, 379-384.	1.7	13
14	Probing and Trapping a Sensitive Conformation: Amyloid-β Fibrils, Oligomers, and Dimers. Journal of Alzheimer's Disease, 2012, 32, 197-215.	1.2	23
15	Amyloids as Sensors and Protectors (ASAP) Hypothesis. Journal of Alzheimer's Disease, 2012, 29, 503-514.	1.2	5
16	Potential role of αâ€synuclein in neurodegeneration: studies in a rat animal model. Journal of Neurochemistry, 2012, 122, 812-822.	2.1	29
17	Amyloid-β Metabolite Sensing: Biochemical Linking of Glycation Modification and Misfolding. Journal of Alzheimer's Disease, 2012, 30, 63-73.	1.2	26
18	Vascular and metabolic dysfunction in Alzheimer's disease: a review. Experimental Biology and Medicine, 2011, 236, 772-782.	1.1	93

Ian Vj Murray

#	Article	IF	CITATIONS
19	Oxidative Stress and Cell Membranes in the Pathogenesis of Alzheimer's Disease. Physiology, 2011, 26, 54-69.	1.6	123
20	Lipid Oxidation and Modification of Amyloid-β (Aβ) in vitro and in vivo. Journal of Alzheimer's Disease, 2010, 22, 593-607.	1.2	18
21	Hydralazine Modifies Aβ Fibril Formation and Prevents Modification by Lipids <i>in Vitro</i> . Biochemistry, 2010, 49, 10371-10380.	1.2	24
22	TNFα-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish <i>s-adenosylhomocysteine hydrolase</i> . Development (Cambridge), 2009, 136, 865-875.	1.2	75
23	Promotion of Amyloid β Protein Misfolding and Fibrillogenesis by a Lipid Oxidation Product. Journal of Molecular Biology, 2008, 377, 1236-1250.	2.0	72
24	Membrane-mediated Amyloidogenesis and the Promotion of Oxidative Lipid Damage by Amyloid β Proteins. Journal of Biological Chemistry, 2007, 282, 9335-9345.	1.6	96
25	A mechanistic link between oxidative stress and membrane mediated amyloidogenesis revealed by infrared spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1913-1922.	1.4	31
26	Mass spectrometric analysis demonstrates that BODIPY 581/591 C11 overestimates and inhibits oxidative lipid damage. Free Radical Biology and Medicine, 2007, 42, 1392-1397.	1.3	36
27	Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Molecular Microbiology, 2006, 61, 418-435.	1.2	39
28	β-synuclein modulates α-synuclein neurotoxicity by reducing α-synuclein protein expression. Human Molecular Genetics, 2006, 15, 3002-3011.	1.4	75
29	Promotion of Oxidative Lipid Membrane Damage by Amyloid β Proteinsâ€. Biochemistry, 2005, 44, 12606-12613.	1.2	107
30	\hat{I}^2 -Synuclein gene alterations in dementia with Lewy bodies. Neurology, 2004, 63, 805-811.	1.5	159
31	Synphilin in normal human brains and in synucleinopathies: studies with new antibodies. Acta Neuropathologica, 2003, 105, 177-184.	3.9	29
32	Role of α-Synuclein Carboxy-Terminus on Fibril Formation in Vitroâ€. Biochemistry, 2003, 42, 8530-8540.	1.2	314
33	Age-dependent synuclein pathology following traumatic brain injury in mice. Experimental Neurology, 2003, 184, 214-224.	2.0	103
34	Early Synergy between Aβ42 and Oxidatively Damaged Membranes in Promoting Amyloid Fibril Formation by Aβ40. Journal of Biological Chemistry, 2003, 278, 36277-36284.	1.6	53
35	A Hydrophobic Stretch of 12 Amino Acid Residues in the Middle of α-Synuclein Is Essential for Filament Assembly. Journal of Biological Chemistry, 2001, 276, 2380-2386.	1.6	865
36	Synucleinopathies: a pathological and molecular review. Clinical Neuroscience Research, 2001, 1, 445-455.	0.8	20

Ian Vj Murray

#	Article	IF	CITATIONS
37	Oxidative Damage Linked to Neurodegeneration by Selective alpha -Synuclein Nitration in Synucleinopathy Lesions. Science, 2000, 290, 985-989.	6.0	1,498
38	Reduced Body Weight, Adipose Tissue, and Leptin Levels Despite Increased Energy Intake in Female Mice Lacking Acylation-Stimulating Protein ¹ . Endocrinology, 2000, 141, 1041-1049.	1.4	112
39	Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C57BL/6 mice. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E474-E480.	1.8	49
40	Acylation Stimulating Protein (ASP) Deficiency Alters Postprandial and Adipose Tissue Metabolism in Male Mice. Journal of Biological Chemistry, 1999, 274, 36219-36225.	1.6	71
41	Acylation-stimulating protein (ASP): structure‒function determinants of cell surface binding and triacylglycerol synthetic activity. Biochemical Journal, 1999, 342, 41.	1.7	21
42	Mice lacking acylation stimulating protein (ASP) have delayed postprandial triglyceride clearance. Journal of Lipid Research, 1999, 40, 1671-6.	2.0	50
43	Functional bioactive recombinant acylation stimulating protein is distinct from C3a anaphylatoxin. Journal of Lipid Research, 1997, 38, 2492-501.	2.0	36