
Blanka Rogina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7753450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430, 686-689.	27.8	1,742
2	Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the United States of America, 2004, 101, 15998-16003.	7.1	1,249
3	Extended Life-Span Conferred by Cotransporter Gene Mutations in <i>Drosophila</i> . Science, 2000, 290, 2137-2140.	12.6	465
4	Longevity Regulation by Drosophila Rpd3 Deacetylase and Caloric Restriction. Science, 2002, 298, 1745-1745.	12.6	250
5	Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3369-3373.	7.1	186
6	Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell, 2005, 4, 309-317.	6.7	130
7	Genetics of Aging in the Fruit Fly,Drosophila melanogaster. Annual Review of Genetics, 2003, 37, 329-348.	7.6	120
8	Long-lived Indy and calorie restriction interact to extend life span. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9262-9267.	7.1	95
9	Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14315-14319.	7.1	87
10	Long-lived <i>Indy</i> induces reduced mitochondrial reactive oxygen species production and oxidative damage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2277-2282.	7.1	71
11	Molecular genetics of aging in the fly: Is this the end of the beginning?. BioEssays, 2003, 25, 134-141.	2.5	64
12	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
13	Distinct biological epochs in the reproductive life of female Drosophila melanogaster. Mechanisms of Ageing and Development, 2007, 128, 477-485.	4.6	48
14	dSir2 and longevity in Drosophila. Experimental Gerontology, 2011, 46, 391-396.	2.8	42
15	The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates. Biochemical Journal, 2006, 397, 25-29.	3.7	37
16	From Genes to Aging in Drosophila. Advances in Genetics, 2003, 49, 67-109.	1.8	34
17	dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction. Aging, 2009, 1, 529-541.	3.1	34
18	Regulation of gene expression is preserved in aging Drosophila melanogaster. Current Biology, 1998, 8, 475-478.	3.9	32

Blanka Rogina

#	Article	IF	CITATIONS
19	Cu, Zn superoxide dismutase deficiency accelerates the time course of an age-related marker in Drosophila melanogaster. , 2000, 1, 163-169.		32
20	Increased mitochondrial biogenesis preserves intestinal stem cell homeostasis and contributes to longevity in Indy mutant flies. Aging, 2014, 6, 335-350.	3.1	31
21	The role of INDY in metabolism, health and longevity. Frontiers in Genetics, 2015, 6, 204.	2.3	30
22	The Effects of Age on Radiation Resistance and Oxidative Stress in Adult Drosophila melanogaster. Radiation Research, 2008, 169, 707-711.	1.5	27
23	The pattern of expression of the chicken homolog of HOX1I in the developing limb suggests a possible role in the ectodermal inhibition of chondrogenesis. Developmental Dynamics, 1992, 193, 92-101.	1.8	25
24	Indy Mutations and Drosophila Longevity. Frontiers in Genetics, 2013, 4, 47.	2.3	25
25	Timing of Expression of a Gene in the Adult Drosophila Is Regulated by Mechanisms Independent of Temperature and Metabolic Rate. Genetics, 1996, 143, 1643-1651.	2.9	22
26	A review of the biomedical innovations for healthy longevity. Aging, 2017, 9, 7-25.	3.1	18
27	Drosophila longevity is not affected by heterochromatin-mediated gene silencing. Aging Cell, 2005, 4, 53-56.	6.7	17
28	INDY—A New Link to Metabolic Regulation in Animals and Humans. Frontiers in Genetics, 2017, 8, 66.	2.3	17
29	Spatial and temporal pattern of expression of the wingless and engrailed genes in the adult antenna is regulated by age-dependent mechanisms. Mechanisms of Development, 1997, 63, 89-97.	1.7	16
30	The First International Mini-Symposium on Methionine Restriction and Lifespan. Frontiers in Genetics, 2014, 5, 122.	2.3	16
31	Regulation of Gene Expression During Aging. Results and Problems in Cell Differentiation, 2000, 29, 67-80.	0.7	16
32	RPD3 histone deacetylase and nutrition have distinct but interacting effects on Drosophila longevity. Aging, 2015, 7, 1112-1128.	3.1	15
33	Changes in gene expression during post-eclosional development in the olfactory system of Drosophila melanogaster. Mechanisms of Development, 1995, 52, 179-185.	1.7	14
34	Acquired temperature-sensitive paralysis as a biomarker of declining neuronal function in aging Drosophila. Aging Cell, 2008, 7, 179-186.	6.7	14
35	Indy Mutants: Live Long and Prosper. Frontiers in Genetics, 2012, 3, 13.	2.3	14
36	For the special issue: Aging studies in Drosophila melanogaster. Experimental Gerontology, 2011, 46, 317-319.	2.8	13

Blanka Rogina

#	Article	IF	CITATIONS
37	Effect of sodium channel abundance on Drosophila development, reproductive capacity and aging. Fly, 2012, 6, 57-67.	1.7	13
38	Cloning of full coding chicken cDNAs for the homeobox-containing geneHoxd-13. Nucleic Acids Research, 1993, 21, 1316-1316.	14.5	11
39	Determination of the Spontaneous Locomotor Activity in Drosophila melanogaster . Journal of Visualized Experiments, 2014, , .	0.3	10
40	Rpd3 interacts with insulin signaling in Drosophila longevity extension. Aging, 2016, 8, 3028-3044.	3.1	10
41	The Effect of Sex Peptide and Calorie Intake on Fecundity in Female <i>Drosophila melanogaster</i> . Scientific World Journal, The, 2009, 9, 1178-1189.	2.1	8
42	The Role of Citrate Transporter INDY in Metabolism and Stem Cell Homeostasis. Metabolites, 2021, 11, 705.	2.9	8
43	The effects of Rpd3 on fly metabolism, health, and longevity. Experimental Gerontology, 2016, 86, 124-128.	2.8	6
44	Msx2 Expression in the Apical Ectoderm Ridge Is Regulated by an Msx2 and Dlx5 Binding Site. Biochemical and Biophysical Research Communications, 2002, 290, 955-961.	2.1	5
45	Sir2, caloric restriction and aging. Pathologie Et Biologie, 2006, 54, 55-57.	2.2	5
46	A Gutsy Way to Extend Longevity. Frontiers in Genetics, 2012, 3, 108.	2.3	4
47	Evolution, Chance, and Aging. Frontiers in Genetics, 2021, 12, 733184.	2.3	4
48	INDY—From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. Frontiers in Aging, 2021, 2, .	2.6	2
49	Reply to Partridge et al.: Longevity of <i>Drosophila Indy</i> mutant is influenced by caloric intake and genetic background. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, .	7.1	1
50	dSir2 and fly mobility. Cell Cycle, 2010, 9, 433-433.	2.6	1
51	The effects of reduced rpd3 levels on fly physiology. Nutrition and Healthy Aging, 2017, 4, 169-179.	1.1	1
52	Patterns of expression of Hoxaâ€11 in micromass cultures of chick limb mesenchyme from various stages suggest a role for Hoxaâ€11 in the specification of the zeugopod. IUBMB Life, 1997, 42, 583-589.	3.4	0
53	Aging, Animal Models for. , 2004, , 126-130.		0
54	A Grand Challenge for Genetics of Aging: Adding Healthy Years to Our Lives. Frontiers in Genetics, 2011, 2, 79.	2.3	0