Mengjing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7753240/publications.pdf

Version: 2024-02-01

516215 454577 31 919 16 30 citations h-index g-index papers 32 32 32 1612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thickness-dependent phase transition kinetics in lithium-intercalated MoS ₂ . 2D Materials, 2022, 9, 025009.	2.0	8
2	A Gapped Phase in Semimetallic T _d â€WTe ₂ Induced by Lithium Intercalation. Advanced Materials, 2022, 34, e2200861.	11.1	7
3	Compact Super Electron-Donor to Monolayer MoS ₂ . Nano Letters, 2022, 22, 4501-4508.	4.5	8
4	Effects of growth substrate on the nucleation of monolayer MoTe ₂ . CrystEngComm, 2021, 23, 7963-7969.	1.3	3
5	Revisiting Intercalationâ€Induced Phase Transitions in 2D Group VI Transition Metal Dichalcogenides. Advanced Energy and Sustainability Research, 2021, 2, 2100027.	2.8	13
6	Enhancing Light–Matter Interactions in MoS ₂ by Copper Intercalation. Advanced Materials, 2021, 33, e2008779.	11.1	25
7	Layer Orientation-Engineered Two-Dimensional Platinum Ditelluride for High-Performance Direct Alcohol Fuel Cells. ACS Energy Letters, 2021, 6, 3481-3487.	8.8	12
8	Heterointerface Control over Lithium-Induced Phase Transitions in MoS ₂ Nanosheets: Implications for Nanoscaled Energy Materials. ACS Applied Nano Materials, 2021, 4, 14105-14114.	2.4	7
9	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	4.5	85
10	Correlation between Color and Elasticity in <i>Anomia ephippium</i> Shells: Biological Design to Enhance the Mechanical Properties. ACS Applied Bio Materials, 2020, 3, 9012-9018.	2.3	0
11	Controllable synthesis of platinum diselenide (PtSe ₂) inorganic fullerene. Journal of Materials Chemistry A, 2020, 8, 18925-18932.	5.2	12
12	Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. Applied Materials Today, 2020, 20, 100718.	2.3	21
13	Thickness-Independent Semiconducting-to-Metallic Conversion in Wafer-Scale Two-Dimensional PtSe ₂ Layers by Plasma-Driven Chalcogen Defect Engineering. ACS Applied Materials & lamp; Interfaces, 2020, 12, 14341-14351.	4.0	51
14	Wafer-Scale Growth of 2D PtTe ₂ with Layer Orientation Tunable High Electrical Conductivity and Superior Hydrophobicity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10839-10851.	4.0	48
15	Wafer-scale 2D PtTe ₂ layers for high-efficiency mechanically flexible electro-thermal smart window applications. Nanoscale, 2020, 12, 10647-10655.	2.8	22
16	Structural Evolutions of Vertically Aligned Two-Dimensional MoS ₂ Layers Revealed by in Situ Heating Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 27843-27853.	1.5	13
17	Terahertz Spectroscopy of 2D Materials. , 2018, , .		1
18	Biodissolution and cellular response to MoO ₃ nanoribbons and a new framework for early hazard screening for 2D materials. Environmental Science: Nano, 2018, 5, 2545-2559.	2.2	17

#	Article	IF	CITATIONS
19	Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Materials, 2018, 5, 045005.	2.0	32
20	Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates. ACS Nano, 2018, 12, 6163-6169.	7.3	28
21	Deintercalation of Zero-Valent Metals from Two-Dimensional Layered Chalcogenides. Chemistry of Materials, 2017, 29, 1650-1655.	3.2	22
22	Ultrafast Zero-Bias Photocurrent in GeS Nanosheets: Promise for Photovoltaics. ACS Energy Letters, 2017, 2, 1429-1434.	8.8	53
23	Polytypic phase transitions in metal intercalated Bi2Se3. Journal of Physics Condensed Matter, 2016, 28, 494002.	0.7	10
24	Reversible Chemochromic MoO ₃ Nanoribbons through Zerovalent Metal Intercalation. ACS Nano, 2015, 9, 3226-3233.	7.3	103
25	Controlled Intracellular Self-Assembly and Disassembly of ¹⁹ F Nanoparticles for MR Imaging of Caspase 3/7 in Zebrafish. ACS Nano, 2015, 9, 761-768.	7.3	108
26	Dual Element Intercalation into 2D Layered Bi ₂ Se ₃ Nanoribbons. Journal of the American Chemical Society, 2015, 137, 5431-5437.	6.6	56
27	A Silicon-Based Two-Dimensional Chalcogenide: Growth of Si ₂ Te ₃ Nanoribbons and Nanoplates. Nano Letters, 2015, 15, 2285-2290.	4.5	55
28	Temperature-driven disorder–order transitions in 2D copper-intercalated MoO ₃ revealed using dynamic transmission electron microscopy. 2D Materials, 2014, 1, 035001.	2.0	8
29	Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and a simple device for its removal. Talanta, 2014, 125, 204-209.	2.9	16
30	Detection of Glutathione <i>in Vitro</i> and in Cells by the Controlled Self-Assembly of Nanorings. Analytical Chemistry, 2013, 85, 1280-1284.	3.2	67
31	"Click Chemistry―for Molecular Imaging. Current Molecular Imaging, 2012, 1, 87-95.	0.7	6