Hikaru Komatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7753095/publications.pdf

Version: 2024-02-01

147566 214527 2,841 101 31 47 citations h-index g-index papers 101 101 101 2319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Social mindfulness for global environmental sustainability?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	8
2	Measuring the Transformation of University Students' Self-Construal for Greater Environmental Sustainability. SAGE Open, 2022, 12, 215824402210798.	0.8	4
3	Is knowledge capital theory degenerate? PIAAC, PISA, and economic growth. Compare, 2021, 51, 240-258.	1.5	13
4	Rearticulating PISA. Globalisation, Societies and Education, 2021, 19, 245-258.	1.9	15
5	Student-Centered Learning and Sustainability: Solution or Problem?. Comparative Education Review, 2021, 65, 6-33.	0.6	46
6	â€~Better policies for better lives'?: constructive critique of the OECD's (mis)measure of student well-being. Journal of Education Policy, 2020, 35, 258-282.	2.1	56
7	Modeling evapotranspiration changes with managing Japanese cedar and cypress plantations. Forest Ecology and Management, 2020, 475, 118395.	1.4	8
8	Reimagining Modern Education: Contributions from Modern Japanese Philosophy and Practice?. ECNU Review of Education, 2020, 3, 20-45.	1.3	21
9	Is bullying and suicide a problem for East Asia's schools? Evidence from TIMSS and PISA. Discourse, 2020, 41, 310-331.	1.1	1
10	Modeling of evapotranspiration changes with forest management practices: A genealogical review. Journal of Hydrology, 2020, 585, 124835.	2.3	23
11	Towards (comparative) educational research for a finite future. Comparative Education, 2020, 56, 190-217.	1.8	21
12	Measuring What <i>Really </i> Matters: Education and Large-Scale Assessments in the Time of Climate Crisis. ECNU Review of Education, 2019, 2, 342-346.	1.3	6
13	Effects of thinning on canopy transpiration of a dense Moso bamboo stand in Western Japan. Journal of Forest Research, 2019, 24, 285-291.	0.7	3
14	Relationship between stem diameter and transpiration for <scp>Japanese</scp> cypress trees: Implications for estimating canopy transpiration. Ecohydrology, 2019, 12, e2097.	1.1	12
15	Refuting the OECD-World Bank development narrative: was East Asia's †Economic Miracle' primarily driven by education quality and cognitive skills?. Globalisation, Societies and Education, 2019, 17, 101-116.	1.9	9
16	Culture and the Independent Self: Obstacles to environmental sustainability?. Anthropocene, 2019, 26, 100198.	1.6	50
17	Stereotypes as Anglo-American exam ritual? Comparisons of students' exam anxiety in East Asia, America, Australia, and the United Kingdom. Oxford Review of Education, 2018, 44, 730-754.	1.4	16
18	Is exam hell the cause of high academic achievement in East Asia? The case of Japan and the case for transcending stereotypes. British Educational Research Journal, 2018, 44, 802-826.	1.4	20

#	Article	IF	CITATIONS
19	Did the shift to computer-based testing in PISA 2015 affect reading scores? A View from East Asia. Compare, 2017, 47, 616-623.	1.5	14
20	Incongruity between scientific knowledge and ordinary perceptions of nature: an ontological perspective for forest hydrology in Japan. Journal of Forest Research, 2017, 22, 75-82.	0.7	7
21	Contribution of lianas to communityâ€level canopy transpiration in a warmâ€temperate forest. Functional Ecology, 2017, 31, 1690-1699.	1.7	11
22	A new global policy regime founded on invalid statistics? Hanushek, Woessmann, PISA, and economic growth. Comparative Education, 2017, 53, 166-191.	1.8	101
23	A PISA Paradox? An Alternative Theory of Learning as a Possible Solution for Variations in PISA Scores. Comparative Education Review, 2017, 61, 269-297.	0.6	49
24	Difference between the transpiration rates of Moso bamboo (<i>Phyllostachys pubescens</i>) and Japanese cedar (<i>Cryptomeria japonica</i>) forests in a subtropical climate in Taiwan. Ecological Research, 2017, 32, 835-843.	0.7	13
25	How to make Lesson Study work in America and worldwide: A Japanese perspective on the onto-cultural basis of (teacher) education. Research in Comparative and International Education, 2017, 12, 398-430.	0.8	47
26	Optimal sap flux sensor allocation for stand transpiration estimates: a non-dimensional analysis. Annals of Forest Science, 2017, 74, 1.	0.8	5
27	Differences in sap fluxâ€based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9, 1105-1116.	1.1	24
28	Living on borrowed time: rethinking temporality, self, nihilism, and schooling. Comparative Education, 2016, 52, 177-201.	1.8	32
29	Seasonal changes of azimuthal, radial, and tree-to-tree variations in sap flux affect stand transpiration estimates in a <i>Cryptomeria japonica</i> forest, central Taiwan. Journal of Forest Research, 2016, 21, 151-160.	0.7	7
30	Scaling-up from tree to stand transpiration for a warm-temperate multi-specific broadleaved forest with a wide variation in stem diameter. Journal of Forest Research, 2016, 21, 161-169.	0.7	18
31	Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates?. Hydrological Processes, 2016, 30, 2129-2137.	1.1	12
32	Canopy transpiration in two Japanese cypress forests with contrasting structures. Journal of Forest Research, 2015, 20, 464-474.	0.7	10
33	Models to predict changes in annual runoff with thinning and clearcutting of Japanese cedar and cypress plantations in Japan. Hydrological Processes, 2015, 29, 5120-5134.	1.1	27
34	Standâ€scale transpiration of two Moso bamboo stands with different culm densities. Ecohydrology, 2015, 8, 450-459.	1.1	30
35	Using airborne LiDAR to determine total sapwood area for estimating stand transpiration in plantations. Hydrological Processes, 2015, 29, 5071-5087.	1.1	10
36	Sapwood and intermediate wood thickness variation in Japanese cedar: impacts on sapwood area estimates. Hydrological Research Letters, 2015, 9, 35-40.	0.3	5

#	Article	IF	CITATIONS
37	Transpiration in response to wind speed: can apparent leaf-type differences between conifer and broadleaf trees be a practical indicator?. Trees - Structure and Function, 2015, 29, 605-612.	0.9	5
38	Effect of strip thinning on rainfall interception in a Japanese cypress plantation. Journal of Hydrology, 2015, 525, 607-618.	2.3	40
39	Changes in the sapwood area of Japanese cedar and cypress plantations after thinning. Journal of Forest Research, 2015, 20, 43-51.	0.7	4
40	Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica D. Don) forest of western Japan. Agricultural and Forest Meteorology, 2015, 214-215, 148-156.	1.9	38
41	Moso-bamboo Forests in Japan:. Journal of the Japanese Forest Society, 2014, 96, 351-361.	0.1	24
42	Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (1): Water use components in Japanese cedar stands. Journal of Hydrology, 2014, 508, 66-76.	2.3	46
43	Implications of leaf-scale physiology for whole tree transpiration under seasonal flooding and drought in central Cambodia. Agricultural and Forest Meteorology, 2014, 198-199, 221-231.	1.9	9
44	A model relating transpiration for Japanese cedar and cypress plantations with stand structure. Forest Ecology and Management, 2014, 334, 301-312.	1.4	25
45	Tropical tree water use under seasonal waterlogging and drought in central Cambodia. Journal of Hydrology, 2014, 515, 81-89.	2.3	23
46	Characteristics of canopy interception loss in Moso bamboo forests of Japan. Hydrological Processes, 2013, 27, 2041-2047.	1.1	22
47	Spatial and temporal variations in rainfall characteristics in mountainous and lowland areas in Taiwan. Hydrological Processes, 2013, 27, 2651-2658.	1.1	9
48	Carbon allocation in a Bornean tropical rainforest without dry seasons. Journal of Plant Research, 2013, 126, 505-515.	1.2	17
49	Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology, 2013, 33, 550-558.	1.4	61
50	Sensitivity of annual runoff to interannual precipitation variations for forested catchments in Japan. Hydrological Research Letters, 2013, 7, 42-47.	0.3	1
51	Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 2013, 7, 60-65.	0.3	22
52	Interannual variation of evapotranspiration in an eastern Siberian larch forest. Hydrological Processes, 2012, 26, 2360-2368.	1,1	12
53	Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 2012, 156, 111-120.	1.9	52
54	Simple modeling of the global variation in annual forest evapotranspiration. Journal of Hydrology, 2012, 420-421, 380-390.	2.3	33

#	Article	IF	Citations
55	Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2011, 151, 1183-1192.	1.9	105
56	Allometric Equations between Stem Diameter and Sapwood Area of Japanese Cedar and Japanese Cypress for Stand Transpiration Estimates Using Sap Flow Measurement. Suimon Mizu Shigen Gakkaishi, 2011, 24, 261-270.	0.1	10
57	Rainfall-runoff Processes in Moso-bamboo (Phyllostachys pubescens) Forests: an Observation Result of Overland-flow and Biomat-flow. Suimon Mizu Shigen Gakkaishi, 2011, 24, 360-368.	0.1	3
58	Influences of canopy structure and physiological traits on flux partitioning between understory and overstory in an eastern Siberian boreal larch forest. Ecological Modelling, 2011, 222, 1479-1490.	1.2	30
59	The effects of annual precipitation and mean air temperature on annual runoff in global forest regions. Climatic Change, 2011, 108, 401-410.	1.7	9
60	Changes in peak flow with decreased forestry practices: Analysis using watershed runoff data. Journal of Environmental Management, 2011, 92, 1528-1536.	3.8	15
61	Interannual variation in transpiration onset and its predictive indicator for a tropical deciduous forest in northern Thailand based on 8â€year sapâ€flow records. Ecohydrology, 2011, 4, 225-235.	1.1	20
62	Increasing annual runoffâ€"broadleaf or coniferous forests?. Hydrological Processes, 2011, 25, 302-318.	1.1	27
63	Are measurements from excised leaves suitable for modeling diurnal patterns of gas exchange of intact leaves?. Hydrological Processes, 2011, 25, 2924-2930.	1.1	11
64	Water resource management in Japan: Forest management or dam reservoirs?. Journal of Environmental Management, 2010, 91, 814-823.	3.8	19
65	Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 2010, 15, 398-403.	0.7	36
66	Spatial and temporal variations in summer precipitation in Japanese mountain areas. Hydrological Processes, 2010, 24, 1844-1855.	1.1	11
67	A simple model to estimate monthly forest evapotranspiration in Japan from monthly temperature. Hydrological Processes, 2010, 24, 1896-1911.	1.1	11
68	A preliminary investigation of surface runoff and soil properties in a moso-bamboo (Phyllostachys) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50
69	Influences of Forest Recovery on Catchment Runoff:Examinations on Two Catchments With Different Geology. Suimon Mizu Shigen Gakkaishi, 2010, 23, 32-42.	0.1	2
70	Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 2010, 30, 129-138.	1.4	72
71	Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 2010, 260, 1295-1302.	1.4	59
72	Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements. Forest Ecology and Management, 2010, 260, 1287-1294.	1.4	48

#	Article	IF	CITATIONS
73	Observation of Canopy Interception Loss in an Abandoned Coniferous Plantation Journal of the Japanese Forest Society, 2010, 92, 54-59.	0.1	15
74	Applicability of Sap Flux Measurements in Moso Bamboo (Phyllostachys pubescens): Relationship between Water Absorption and Whole-tree Water Use Utilizing Granier Sensor Sap Flux Measurements Journal of the Japanese Forest Society, 2009, 91, 366-370.	0.1	10
75	Changes in low flow with the conversion of a coniferous plantation to a broadâ€leaved forest in a summer precipitation region, Japan. Ecohydrology, 2009, 2, 164-172.	1.1	14
76	Rainfall interception in a moso bamboo (Phyllostachys pubescens) forest. Journal of Forest Research, 2009, 14, 111-116.	0.7	33
77	Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2009, 149, 1666-1673.	1.9	87
78	A model to estimate annual forest evapotranspiration in Japan from mean annual temperature. Journal of Hydrology, 2008, 348, 330-340.	2.3	59
79	Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2008, 148, 1181-1189.	1.9	44
80	The effect of converting a native broad-leaved forest to a coniferous plantation forest on annual water yield: A paired-catchment study in northern Japan. Forest Ecology and Management, 2008, 255, 880-886.	1.4	62
81	Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management, 2008, 256, 1189-1197.	1.4	49
82	Effects of Coniferous Plantation Thinning on Annual Interception Evaporation:. Journal of the Japanese Forest Society, 2008, 91, 94-103.	0.1	9
83	Relationship Between Tree Height and Transpiration for Individual Japanese Cypress (Chamaecyparis) Tj ETQq1	1 0.78431	4 rgBT /Ovedo
84	Relationship between Nighttime Wind Speeds and Thermal Conditions above a Sloping Forest. Journal of the Meteorological Society of Japan, 2008, 86, 805-815.	0.7	2
85	Reduction in soil water availability and tree transpiration in a forest with pedestrian trampling. Agricultural and Forest Meteorology, 2007, 146, 107-114.	1.9	23
86	Relationship between stem density and dry-canopy evaporation rates in coniferous forests. Journal of Hydrology, 2007, 332, 271-275.	2.3	5
87	Do coniferous forests evaporate more water than broad-leaved forests in Japan?. Journal of Hydrology, 2007, 336, 361-375.	2.3	115
88	What is the best way to represent surface conductance for a range of vegetated sites?. Hydrological Processes, 2007, 21, 1142-1147.	1.1	4
89	A Method for Estimating Global Solar Radiation from Daily Maximum and Minimum Temperatures: its Applicability to Japan. Suimon Mizu Shigen Gakkaishi, 2007, 20, 462-469.	0.1	6
90	Modeling CO2exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	55

#	Article	IF	CITATIONS
91	Inter-annual variation in growing season length of a tropical seasonal forest in northern Thailand. Forest Ecology and Management, 2006, 229, 333-339.	1.4	67
92	Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. Journal of Forest Research, 2006, 11, 41-50.	0.7	66
93	Transpiration from aCryptomeria japonica plantation, part 2: responses of canopy conductance to meteorological factors. Hydrological Processes, 2006, 20, 1321-1334.	1.1	37
94	Forest categorization according to dry-canopy evaporation rates in the growing season: comparison of the Priestley-Taylor coefficient values from various observation sites. Hydrological Processes, 2005, 19, 3873-3896.	1.1	82
95	Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number. Boundary-Layer Meteorology, 2005, 115, 205-221.	1.2	12
96	Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2005, 128, 81-92.	1.9	166
97	Differences in Annual Precipitation Amounts Between Forested Area, Agricultural Area, and Urban Area in Japan. Suimon Mizu Shigen Gakkaishi, 2005, 18, 435-440.	0.1	21
98	A general method of parameterizing the big-leaf model to predict the dry-canopy evaporation rate of individual coniferous forest stands. Hydrological Processes, 2004, 18, 3019-3036.	1.1	26
99	Seasonal Trend in the Occurrence of Nocturnal Drainage Flow on a Forested Slope Under a Tropical Monsoon Climate. Boundary-Layer Meteorology, 2003, 106, 573-592.	1.2	27
100	Relationship between canopy height and the reference value of surface conductance for closed coniferous stands. Hydrological Processes, 2003, 17, 2503-2512.	1.1	33
101	Is shadow education the driver of East Asia's high performance on comparative learning assessments?. Education Policy Analysis Archives, 0, 28, 67.	0.3	O