
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7753095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2005, 128, 81-92.	1.9	166
2	Do coniferous forests evaporate more water than broad-leaved forests in Japan?. Journal of Hydrology, 2007, 336, 361-375.	2.3	115
3	Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2011, 151, 1183-1192.	1.9	105
4	A new global policy regime founded on invalid statistics? Hanushek, Woessmann, PISA, and economic growth. Comparative Education, 2017, 53, 166-191.	1.8	101
5	Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2009, 149, 1666-1673.	1.9	87
6	Forest categorization according to dry-canopy evaporation rates in the growing season: comparison of the Priestley-Taylor coefficient values from various observation sites. Hydrological Processes, 2005, 19, 3873-3896.	1.1	82
7	Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 2010, 30, 129-138.	1.4	72
8	Inter-annual variation in growing season length of a tropical seasonal forest in northern Thailand. Forest Ecology and Management, 2006, 229, 333-339.	1.4	67
9	Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. Journal of Forest Research, 2006, 11, 41-50.	0.7	66
10	The effect of converting a native broad-leaved forest to a coniferous plantation forest on annual water yield: A paired-catchment study in northern Japan. Forest Ecology and Management, 2008, 255, 880-886.	1.4	62
11	Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology, 2013, 33, 550-558.	1.4	61
12	A model to estimate annual forest evapotranspiration in Japan from mean annual temperature. Journal of Hydrology, 2008, 348, 330-340.	2.3	59
13	Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 2010, 260, 1295-1302.	1.4	59
14	â€~Better policies for better lives'?: constructive critique of the OECD's (mis)measure of student well-being. Journal of Education Policy, 2020, 35, 258-282.	2.1	56
15	Modeling CO2exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	55
16	Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 2012, 156, 111-120.	1.9	52
17	Culture and the Independent Self: Obstacles to environmental sustainability?. Anthropocene, 2019, 26, 100198.	1.6	50
18	Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management, 2008, 256, 1189-1197.	1.4	49

#	Article	IF	CITATIONS
19	A PISA Paradox? An Alternative Theory of Learning as a Possible Solution for Variations in PISA Scores. Comparative Education Review, 2017, 61, 269-297.	0.6	49
20	Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements. Forest Ecology and Management, 2010, 260, 1287-1294.	1.4	48
21	How to make Lesson Study work in America and worldwide: A Japanese perspective on the onto-cultural basis of (teacher) education. Research in Comparative and International Education, 2017, 12, 398-430.	0.8	47
22	Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (1): Water use components in Japanese cedar stands. Journal of Hydrology, 2014, 508, 66-76.	2.3	46
23	Student-Centered Learning and Sustainability: Solution or Problem?. Comparative Education Review, 2021, 65, 6-33.	0.6	46
24	Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 2008, 148, 1181-1189.	1.9	44
25	Effect of strip thinning on rainfall interception in a Japanese cypress plantation. Journal of Hydrology, 2015, 525, 607-618.	2.3	40
26	Comparative modeling of the effects of intensive thinning on canopy interception loss in a Japanese cedar (Cryptomeria japonica D. Don) forest of western Japan. Agricultural and Forest Meteorology, 2015, 214-215, 148-156.	1.9	38
27	Transpiration from aCryptomeria japonica plantation, part 2: responses of canopy conductance to meteorological factors. Hydrological Processes, 2006, 20, 1321-1334.	1.1	37
28	Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 2010, 15, 398-403.	0.7	36
29	Relationship between canopy height and the reference value of surface conductance for closed coniferous stands. Hydrological Processes, 2003, 17, 2503-2512.	1.1	33
30	Rainfall interception in a moso bamboo (Phyllostachys pubescens) forest. Journal of Forest Research, 2009, 14, 111-116.	0.7	33
31	Simple modeling of the global variation in annual forest evapotranspiration. Journal of Hydrology, 2012, 420-421, 380-390.	2.3	33
32	Living on borrowed time: rethinking temporality, self, nihilism, and schooling. Comparative Education, 2016, 52, 177-201.	1.8	32
33	Influences of canopy structure and physiological traits on flux partitioning between understory and overstory in an eastern Siberian boreal larch forest. Ecological Modelling, 2011, 222, 1479-1490.	1.2	30
34	Standâ€scale transpiration of two Moso bamboo stands with different culm densities. Ecohydrology, 2015, 8, 450-459.	1.1	30
35	Seasonal Trend in the Occurrence of Nocturnal Drainage Flow on a Forested Slope Under a Tropical Monsoon Climate. Boundary-Layer Meteorology, 2003, 106, 573-592.	1.2	27
36	Increasing annual runoff—broadleaf or coniferous forests?. Hydrological Processes, 2011, 25, 302-318.	1.1	27

HIKARU KOMATSU

#	Article	IF	CITATIONS
37	Models to predict changes in annual runoff with thinning and clearcutting of Japanese cedar and cypress plantations in Japan. Hydrological Processes, 2015, 29, 5120-5134.	1.1	27
38	A general method of parameterizing the big-leaf model to predict the dry-canopy evaporation rate of individual coniferous forest stands. Hydrological Processes, 2004, 18, 3019-3036.	1.1	26
39	A model relating transpiration for Japanese cedar and cypress plantations with stand structure. Forest Ecology and Management, 2014, 334, 301-312.	1.4	25
40	Moso-bamboo Forests in Japan:. Journal of the Japanese Forest Society, 2014, 96, 351-361.	0.1	24
41	Differences in sap fluxâ€based stand transpiration between upper and lower slope positions in a Japanese cypress plantation watershed. Ecohydrology, 2016, 9, 1105-1116.	1.1	24
42	Reduction in soil water availability and tree transpiration in a forest with pedestrian trampling. Agricultural and Forest Meteorology, 2007, 146, 107-114.	1.9	23
43	Tropical tree water use under seasonal waterlogging and drought in central Cambodia. Journal of Hydrology, 2014, 515, 81-89.	2.3	23
44	Modeling of evapotranspiration changes with forest management practices: A genealogical review. Journal of Hydrology, 2020, 585, 124835.	2.3	23
45	Characteristics of canopy interception loss in Moso bamboo forests of Japan. Hydrological Processes, 2013, 27, 2041-2047.	1.1	22
46	Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrological Research Letters, 2013, 7, 60-65.	0.3	22
47	Reimagining Modern Education: Contributions from Modern Japanese Philosophy and Practice?. ECNU Review of Education, 2020, 3, 20-45.	1.3	21
48	Towards (comparative) educational research for a finite future. Comparative Education, 2020, 56, 190-217.	1.8	21
49	Differences in Annual Precipitation Amounts Between Forested Area, Agricultural Area, and Urban Area in Japan. Suimon Mizu Shigen Gakkaishi, 2005, 18, 435-440.	0.1	21
50	Interannual variation in transpiration onset and its predictive indicator for a tropical deciduous forest in northern Thailand based on 8â€year sapâ€flow records. Ecohydrology, 2011, 4, 225-235.	1.1	20
51	Is exam hell the cause of high academic achievement in East Asia? The case of Japan and the case for transcending stereotypes. British Educational Research Journal, 2018, 44, 802-826.	1.4	20
52	Water resource management in Japan: Forest management or dam reservoirs?. Journal of Environmental Management, 2010, 91, 814-823.	3.8	19
53	A preliminary investigation of surface runoff and soil properties in a moso-bamboo (Phyllostachys) Tj ETQq1 1 (0.784314 rg 0.3	gBT /Overlock 19
54	Scaling-up from tree to stand transpiration for a warm-temperate multi-specific broadleaved forest	0.7	18

with a wide variation in stem diameter. Journal of Forest Research, 2016, 21, 161-169.

0.7 18

#	Article	IF	CITATIONS
55	Carbon allocation in a Bornean tropical rainforest without dry seasons. Journal of Plant Research, 2013, 126, 505-515.	1.2	17
56	Stereotypes as Anglo-American exam ritual? Comparisons of students' exam anxiety in East Asia, America, Australia, and the United Kingdom. Oxford Review of Education, 2018, 44, 730-754.	1.4	16
57	Changes in peak flow with decreased forestry practices: Analysis using watershed runoff data. Journal of Environmental Management, 2011, 92, 1528-1536.	3.8	15
58	Rearticulating PISA. Globalisation, Societies and Education, 2021, 19, 245-258.	1.9	15
59	Observation of Canopy Interception Loss in an Abandoned Coniferous Plantation Journal of the Japanese Forest Society, 2010, 92, 54-59.	0.1	15
60	Changes in low flow with the conversion of a coniferous plantation to a broadâ€leaved forest in a summer precipitation region, Japan. Ecohydrology, 2009, 2, 164-172.	1.1	14
61	Did the shift to computer-based testing in PISA 2015 affect reading scores? A View from East Asia. Compare, 2017, 47, 616-623.	1.5	14
62	Difference between the transpiration rates of Moso bamboo (<i>Phyllostachys pubescens</i>) and Japanese cedar (<i>Cryptomeria japonica</i>) forests in a subtropical climate in Taiwan. Ecological Research, 2017, 32, 835-843.	0.7	13
63	Is knowledge capital theory degenerate? PIAAC, PISA, and economic growth. Compare, 2021, 51, 240-258.	1.5	13
64	Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number. Boundary-Layer Meteorology, 2005, 115, 205-221.	1.2	12
65	Interannual variation of evapotranspiration in an eastern Siberian larch forest. Hydrological Processes, 2012, 26, 2360-2368.	1.1	12
66	Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates?. Hydrological Processes, 2016, 30, 2129-2137.	1.1	12
67	Relationship between stem diameter and transpiration for <scp>Japanese</scp> cypress trees: Implications for estimating canopy transpiration. Ecohydrology, 2019, 12, e2097.	1.1	12
68	Spatial and temporal variations in summer precipitation in Japanese mountain areas. Hydrological Processes, 2010, 24, 1844-1855.	1.1	11
69	A simple model to estimate monthly forest evapotranspiration in Japan from monthly temperature. Hydrological Processes, 2010, 24, 1896-1911.	1.1	11
70	Are measurements from excised leaves suitable for modeling diurnal patterns of gas exchange of intact leaves?. Hydrological Processes, 2011, 25, 2924-2930.	1.1	11
71	Contribution of lianas to communityâ€ l evel canopy transpiration in a warmâ€ŧemperate forest. Functional Ecology, 2017, 31, 1690-1699.	1.7	11
72	Applicability of Sap Flux Measurements in Moso Bamboo (Phyllostachys pubescens): Relationship between Water Absorption and Whole-tree Water Use Utilizing Granier Sensor Sap Flux Measurements Journal of the Japanese Forest Society, 2009, 91, 366-370.	0.1	10

#	Article	IF	CITATIONS
73	Allometric Equations between Stem Diameter and Sapwood Area of Japanese Cedar and Japanese Cypress for Stand Transpiration Estimates Using Sap Flow Measurement. Suimon Mizu Shigen Gakkaishi, 2011, 24, 261-270.	0.1	10
74	Canopy transpiration in two Japanese cypress forests with contrasting structures. Journal of Forest Research, 2015, 20, 464-474.	0.7	10
75	Using airborne LiDAR to determine total sapwood area for estimating stand transpiration in plantations. Hydrological Processes, 2015, 29, 5071-5087.	1.1	10
76	Effects of Coniferous Plantation Thinning on Annual Interception Evaporation:. Journal of the Japanese Forest Society, 2008, 91, 94-103.	0.1	9
77	The effects of annual precipitation and mean air temperature on annual runoff in global forest regions. Climatic Change, 2011, 108, 401-410.	1.7	9
78	Spatial and temporal variations in rainfall characteristics in mountainous and lowland areas in Taiwan. Hydrological Processes, 2013, 27, 2651-2658.	1.1	9
79	Implications of leaf-scale physiology for whole tree transpiration under seasonal flooding and drought in central Cambodia. Agricultural and Forest Meteorology, 2014, 198-199, 221-231.	1.9	9
80	Refuting the OECD-World Bank development narrative: was East Asia's â€~Economic Miracle' primarily driven by education quality and cognitive skills?. Globalisation, Societies and Education, 2019, 17, 101-116.	1.9	9
81	Relationship Between Tree Height and Transpiration for Individual Japanese Cypress (Chamaecyparis) Tj ETQq1 1	0.784314 0.1	rggT /Overlo
82	Modeling evapotranspiration changes with managing Japanese cedar and cypress plantations. Forest Ecology and Management, 2020, 475, 118395.	1.4	8
83	Social mindfulness for global environmental sustainability?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
84	Seasonal changes of azimuthal, radial, and tree-to-tree variations in sap flux affect stand transpiration estimates in a <i>Cryptomeria japonica</i> forest, central Taiwan. Journal of Forest Research, 2016, 21, 151-160.	0.7	7
85	Incongruity between scientific knowledge and ordinary perceptions of nature: an ontological perspective for forest hydrology in Japan. Journal of Forest Research, 2017, 22, 75-82.	0.7	7
86	Measuring What <i>Really</i> Matters: Education and Large-Scale Assessments in the Time of Climate Crisis. ECNU Review of Education, 2019, 2, 342-346.	1.3	6
87	A Method for Estimating Global Solar Radiation from Daily Maximum and Minimum Temperatures: its Applicability to Japan. Suimon Mizu Shigen Gakkaishi, 2007, 20, 462-469.	0.1	6
88	Relationship between stem density and dry-canopy evaporation rates in coniferous forests. Journal of Hydrology, 2007, 332, 271-275.	2.3	5
89	Sapwood and intermediate wood thickness variation in Japanese cedar: impacts on sapwood area estimates. Hydrological Research Letters, 2015, 9, 35-40.	0.3	5
90	Transpiration in response to wind speed: can apparent leaf-type differences between conifer and broadleaf trees be a practical indicator?. Trees - Structure and Function, 2015, 29, 605-612.	0.9	5

#	Article	IF	CITATIONS
91	Optimal sap flux sensor allocation for stand transpiration estimates: a non-dimensional analysis. Annals of Forest Science, 2017, 74, 1.	0.8	5
92	What is the best way to represent surface conductance for a range of vegetated sites?. Hydrological Processes, 2007, 21, 1142-1147.	1.1	4
93	Changes in the sapwood area of Japanese cedar and cypress plantations after thinning. Journal of Forest Research, 2015, 20, 43-51.	0.7	4
94	Measuring the Transformation of University Students' Self-Construal for Greater Environmental Sustainability. SAGE Open, 2022, 12, 215824402210798.	0.8	4
95	Rainfall-runoff Processes in Moso-bamboo (Phyllostachys pubescens) Forests : an Observation Result of Overland-flow and Biomat-flow. Suimon Mizu Shigen Gakkaishi, 2011, 24, 360-368.	0.1	3
96	Effects of thinning on canopy transpiration of a dense Moso bamboo stand in Western Japan. Journal of Forest Research, 2019, 24, 285-291.	0.7	3
97	Influences of Forest Recovery on Catchment Runoff:Examinations on Two Catchments With Different Geology. Suimon Mizu Shigen Gakkaishi, 2010, 23, 32-42.	0.1	2
98	Relationship between Nighttime Wind Speeds and Thermal Conditions above a Sloping Forest. Journal of the Meteorological Society of Japan, 2008, 86, 805-815.	0.7	2
99	Is bullying and suicide a problem for East Asia's schools? Evidence from TIMSS and PISA. Discourse, 2020, 41, 310-331.	1.1	1
100	Sensitivity of annual runoff to interannual precipitation variations for forested catchments in Japan. Hydrological Research Letters, 2013, 7, 42-47.	0.3	1
101	Is shadow education the driver of East Asia's high performance on comparative learning assessments?. Education Policy Analysis Archives, 0, 28, 67.	0.3	Ο