Bilal Shahid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a ï€ bridge. Energy and Environmental Science, 2017, 10, 614-620.	30.8	109
2	High Extinction Coefficient Thieno[3,4- <i>b</i>]thiophene-Based Copolymer for Efficient Fullerene-Free Solar Cells with Large Current Density. Chemistry of Materials, 2017, 29, 6766-6771.	6.7	56
3	Terpolymer Strategy toward High-Efficiency Polymer Solar Cells: Integrating Symmetric Benzodithiophene and Asymmetrical Thieno[2,3- <i>f</i>]benzofuran Segments. Chemistry of Materials, 2019, 31, 6163-6173.	6.7	47
4	Alkylthienyl substituted asymmetric 2D BDT and DTBT-based polymer solar cells with a power conversion efficiency of 9.2%. Journal of Materials Chemistry A, 2018, 6, 2371-2378.	10.3	37
5	Single-junction fullerene solar cells with 10% efficiency and high open-circuit voltage approaching 1 V. Nano Energy, 2017, 40, 495-503.	16.0	27
6	Design, synthesis and photovoltaic properties of two π-bridged cyclopentadithiophene-based polymers. Polymer Chemistry, 2014, 5, 6551-6557.	3.9	26
7	Regulating Molecular Aggregations of Polymers via Ternary Copolymerization Strategy for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 32126-32134.	8.0	26
8	Naphthalene substituents bonded via the β-position: an extended conjugated moiety can achieve a decent trade-off between optical band gap and open circuit voltage in symmetry-breaking benzodithiophene-based polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 9141-9147.	10.3	24
9	Dithieno[3,2-b:2′,3′-d]silole-based low band gap polymers: the effect of fluorine and side chain substituents on photovoltaic performance. Polymer Chemistry, 2015, 6, 6219-6226.	3.9	18
10	Influence of a π-bridge dependent molecular configuration on the optical and electrical characteristics of organic solar cells. Journal of Materials Chemistry A, 2016, 4, 8784-8792.	10.3	18
11	Tailoring the structures and photonic properties of low-dimensional organic materials by crystal engineering. Nanoscale, 2018, 10, 4680-4685.	5.6	18
12	Thiazole-Induced Quinoid Polymers for Efficient Solar Cells: Influence of Molecular Skeleton, Regioselectivity, and Regioregularity. Chemistry of Materials, 2018, 30, 4639-4645.	6.7	16
13	Aromatic Heterocycle 1,3,4â€Oxadiazole‣ubstituted Thieno[3,4â€ <i>b</i>]thiophene to Build Lowâ€Bandgap Polymer for Photovoltaic Application. Macromolecular Rapid Communications, 2015, 36, 2065-2069.	3.9	12
14	Rational Design of Low Band Gap Polymers for Efficient Solar Cells with High Open-Circuit Voltage: The Profound Effect of Me and Cl Substituents with a Similar van Der Waals Radius. ACS Applied Materials & Interfaces, 2019, 11, 48155-48161.	8.0	9
15	Side-chain engineering improves molecular stacking and miscibility for efficient fullerene organic solar cells. Journal of Materials Chemistry C, 2022, 10, 6754-6761.	5.5	8
16	Chlorinated Polymers for Efficient Solar Cells with High Open Circuit Voltage: The Influence of Different Thiazole Numbers. Macromolecular Rapid Communications, 2019, 40, e1900035.	3.9	5
17	Halogenation effect promoted low bandgap polymers based on asymmetric isoindigo unit with low energy loss. Polymer International, 2020, 69, 564-570.	3.1	5
18	Low band-gap polymers based on easily synthesized thioester-substituted thieno[3,4-b]thiophene for polymer solar cells. RSC Advances, 2015, 5, 62336-62342.	3.6	4