Diogo Vila-ViÃ\sosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/775259/publications.pdf

Version: 2024-02-01

		361045	476904	
36	929	20	29	
papers	citations	h-index	g-index	
36	36	36	1273	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Optimization of an <i>in Silico</i> Protocol Using Probe Permeabilities to Identify Membrane Pan-Assay Interference Compounds. Journal of Chemical Information and Modeling, 2022, 62, 3034-3042.	2.5	5
2	Identification of Pan-Assay INterference compoundS (PAINS) Using an MD-Based Protocol. Methods in Molecular Biology, 2021, 2315, 263-271.	0.4	6
3	Unsupervised Walking Activity Assessment Reveals <scp>COVID</scp> â€19 Impact on Parkinson's Disease Patients. Movement Disorders, 2021, 36, 531-532.	2.2	4
4	Halogen Bonding: An Underestimated Player in Membrane–Ligand Interactions. Journal of the American Chemical Society, 2021, 143, 4253-4267.	6.6	34
5	Improved Protocol to Tackle the pH Effects on Membrane-Inserting Peptides. Journal of Chemical Theory and Computation, 2021, 17, 3830-3840.	2.3	12
6	New luminescent tetracoordinate boron complexes: an in-depth experimental and theoretical characterisation and their application in OLEDs. Inorganic Chemistry Frontiers, 2021, 8, 3960-3983.	3.0	13
7	PypKa: A Flexible Python Module for Poisson–Boltzmann-Based p <i>K</i> _a Calculations. Journal of Chemical Information and Modeling, 2020, 60, 4442-4448.	2.5	33
8	The Early Phase of \hat{l}^2 2m Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the \hat{l}^3 N6 Variant. Biomolecules, 2019, 9, 366.	1.8	11
9	Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opinion on Drug Discovery, 2019, 14, 805-820.	2.5	36
10	Tackling Halogenated Species with PBSA: Effect of Emulating the \ddot{l}_f -Hole. Journal of Chemical Theory and Computation, 2019, 15, 4241-4251.	2.3	15
11	A pH Replica Exchange Scheme in the Stochastic Titration Constant-pH MD Method. Journal of Chemical Theory and Computation, 2019, 15, 3108-3116.	2.3	17
12	Role of Counterions in Constant-pH Molecular Dynamics Simulations of PAMAM Dendrimers. ACS Omega, 2018, 3, 2001-2009.	1.6	20
13	Differential targeting of membrane lipid domains by caffeic acid and its ester derivatives. Free Radical Biology and Medicine, 2018, 115, 232-245.	1.3	42
14	Sugar-based bactericides targeting phosphatidylethanolamine-enriched membranes. Nature Communications, 2018, 9, 4857.	5.8	31
15	The Impact of Using Single Atomistic Long-Range Cutoff Schemes with the GROMOS 54A7 Force Field. Journal of Chemical Theory and Computation, 2018, 14, 5823-5833.	2.3	33
16	Biomolecular Simulations of Halogen Bonds with a GROMOS Force Field. Journal of Chemical Theory and Computation, 2018, 14, 5383-5392.	2.3	20
17	Membrane-Induced p <i>K</i> _a Shifts in <i>wt</i> -pHLIP and Its L16H Variant. Journal of Chemical Theory and Computation, 2018, 14, 3289-3297.	2.3	33
18	Targeting Type 2 Diabetes with <i>C</i> -Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 2017, 60, 568-579.	2.9	50

#	Article	IF	Citations
19	Insights on the Mechanism of Action of INH-C ₁₀ as an Antitubercular Prodrug. Molecular Pharmaceutics, 2017, 14, 4597-4605.	2.3	15
20	A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2â€microglobulin. Proteins: Structure, Function and Bioinformatics, 2017, 85, 2045-2057.	1.5	17
21	Violet-blue emitting 2-(N-alkylimino)pyrrolyl organoboranes: Synthesis, structure and luminescent properties. Dyes and Pigments, 2017, 140, 520-532.	2.0	17
22	Boron complexes of aromatic ring fused iminopyrrolyl ligands: synthesis, structure, and luminescence properties. Dalton Transactions, 2016, 45, 15603-15620.	1.6	36
23	p < i > K < / i > < sub > a < / sub > Values of Titrable Amino Acids at the Water/Membrane Interface. Journal of Chemical Theory and Computation, 2016, 12, 930-934.	2.3	59
24	Constant-pH MD Simulations of an Oleic Acid Bilayer. Journal of Chemical Theory and Computation, 2015, 11, 2367-2376.	2.3	30
25	Luminescent Di―and Trinuclear Boron Complexes Based on Aromatic Iminopyrrolyl Spacer Ligands: Synthesis, Characterization, and Application in OLEDs. Chemistry - A European Journal, 2015, 21, 9133-9149.	1.7	47
26	Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers. Journal of Chemical Theory and Computation, 2015, 11, 5973-5979.	2.3	36
27	Wittig Reaction: Domino Olefination and Stereoselectivity DFT Study. Synthesis of the Miharamycins' Bicyclic Sugar Moiety. Organic Letters, 2015, 17, 5622-5625.	2.4	18
28	Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water?. Beilstein Journal of Organic Chemistry, 2014, 10, 1513-1523.	1.3	6
29	A Simulated Intermediate State for Folding and Aggregation Provides Insights into ΔN6 β2-Microglobulin Amyloidogenic Behavior. PLoS Computational Biology, 2014, 10, e1003606.	1.5	34
30	Treatment of Ionic Strength in Biomolecular Simulations of Charged Lipid Bilayers. Journal of Chemical Theory and Computation, 2014, 10, 5483-5492.	2.3	23
31	Dinuclear Zinc–Nâ€Heterocyclic Carbene Complexes for Either the Controlled Ringâ€Opening Polymerization of Lactide or the Controlled Degradation of Polylactide Under Mild Conditions. ChemCatChem, 2014, 6, 1357-1367.	1.8	33
32	Protonation of DMPC in a Bilayer Environment Using a Linear Response Approximation. Journal of Chemical Theory and Computation, 2014, 10, 2176-2184.	2.3	29
33	Can self-assembly of copper(ii) picolinamide building blocks be controlled?. CrystEngComm, 2013, 15, 8074.	1.3	9
34	Conformational Study of GSH and GSSG Using Constant-pH Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 7507-7517.	1.2	29
35	Reversibility of Prion Misfolding: Insights from Constant-pH Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2012, 116, 8812-8821.	1.2	41
36	Coordination-driven self-assembly of thiocyanate complexes of Co(ii), Ni(ii) and Cu(ii) with picolinamide: a structural and DFT study. CrystEngComm, 2011, 13, 5863.	1.3	35