Fatih Ozaltin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752538/publications.pdf

Version: 2024-02-01

106 papers 5,652 citations

36 h-index 79698 73 g-index

107 all docs

 $\begin{array}{c} 107 \\ \\ \text{docs citations} \end{array}$

107 times ranked

5874 citing authors

#	Article	IF	CITATIONS
1	Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nature Genetics, 2006, 38, 1397-1405.	21.4	510
2	Nephrotic Syndrome in the First Year of Life: Two Thirds of Cases Are Caused by Mutations in 4 Genes (<i>NPHS1</i> , <i>NPHS2</i> , <i>WT1</i> , and <i>LAMB2</i>). Pediatrics, 2007, 119, e907-e919.	2.1	384
3	COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. Journal of Clinical Investigation, 2011, 121, 2013-2024.	8.2	343
4	Spectrum of Steroid-Resistant and Congenital Nephrotic Syndrome in Children. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 592-600.	4.5	225
5	<i>MYO1E</i> Mutations and Childhood Familial Focal Segmental Glomerulosclerosis. New England Journal of Medicine, 2011, 365, 295-306.	27.0	221
6	Circulating suPAR in Two Cohorts of Primary FSGS. Journal of the American Society of Nephrology: JASN, 2012, 23, 2051-2059.	6.1	202
7	Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 53-62.	4.5	170
8	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	21.4	164
9	Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nature Genetics, 2016, 48, 457-465.	21.4	149
10	Long-Term Outcome of Steroid-Resistant Nephrotic Syndrome in Children. Journal of the American Society of Nephrology: JASN, 2017, 28, 3055-3065.	6.1	142
11	Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrology Dialysis Transplantation, 2007, 23, 1291-1297.	0.7	137
12	Specific Podocin Mutations Correlate with Age of Onset in Steroid-Resistant Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2008, 19, 365-371.	6.1	135
13	DGKE Variants Cause a Glomerular Microangiopathy That Mimics Membranoproliferative GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 377-384.	6.1	130
14	Prevalence of WT1 mutations in a large cohort of patients with steroid-resistant and steroid-sensitive nephrotic syndrome. Kidney International, 2004, 66, 564-570.	5.2	117
15	Genotype–phenotype associations in WT1 glomerulopathy. Kidney International, 2014, 85, 1169-1178.	5.2	113
16	Mutations in the Wilms' Tumor 1 Gene Cause Isolated Steroid Resistant Nephrotic Syndrome and Occur in Exons 8 and 9. Pediatric Research, 2006, 59, 325-331.	2.3	108
17	The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney International, 2010, 78, 1295-1304.	5. 2	105
18	Risk factors in community-acquired urinary tract infections caused by ESBL-producing bacteria in children. Pediatric Nephrology, 2010, 25, 919-925.	1.7	102

#	Article	IF	CITATIONS
19	Mutations in EMP2 Cause Childhood-Onset Nephrotic Syndrome. American Journal of Human Genetics, 2014, 94, 884-890.	6.2	101
20	Disruption of PTPRO Causes Childhood-Onset Nephrotic Syndrome. American Journal of Human Genetics, 2011, 89, 139-147.	6.2	90
21	Childhood vasculitides in Turkey: a nationwide survey. Clinical Rheumatology, 2006, 26, 196-200.	2.2	88
22	Genotype/Phenotype Correlation in Nephrotic Syndrome Caused by WT1 Mutations. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1655-1662.	4.5	87
23	ADCK4-Associated Glomerulopathy Causes Adolescence-Onset FSGS. Journal of the American Society of Nephrology: JASN, 2016, 27, 63-68.	6.1	79
24	Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney International, 2013, 84, 206-213.	5. 2	77
25	<i>NPHS2</i> Mutations in Steroid-Resistant Nephrotic Syndrome: A Mutation Update and the Associated Phenotypic Spectrum. Human Mutation, 2014, 35, 178-186.	2.5	76
26	Thirteen novel NPHS1 mutations in a large cohort of children with congenital nephrotic syndrome. Nephrology Dialysis Transplantation, 2008, 23, 3527-3533.	0.7	74
27	Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney International, 2016, 89, 468-475.	5.2	74
28	Evaluation of intima media thickness of the common and internal carotid arteries with inflammatory markers in familial Mediterranean fever as possible predictors for atherosclerosis. Rheumatology International, 2008, 28, 1211-1216.	3.0	71
29	Normal 25-Hydroxyvitamin D Levels Are Associated with Less Proteinuria and Attenuate Renal Failure Progression in Children with CKD. Journal of the American Society of Nephrology: JASN, 2016, 27, 314-322.	6.1	59
30	Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatric Nephrology, 2017, 32, 1369-1375.	1.7	53
31	Acute parvovirus B19 infection mimicking juvenile myelomonocytic leukemia. European Journal of Haematology, 2000, 65, 276-278.	2.2	43
32	Low levels of urinary epidermal growth factorÂpredict chronic kidney disease progressionÂin children. Kidney International, 2019, 96, 214-221.	5. 2	43
33	Tocilizumab treatment in childhood Takayasu arteritis: Case series of four patients and systematic review of the literature. Seminars in Arthritis and Rheumatism, 2017, 46, 529-535.	3.4	42
34	The significance of IgA class of antineutrophil cytoplasmic antibodies (ANCA) in childhood Henoch?Sch�nlein purpura. Clinical Rheumatology, 2004, 23, 426-429.	2.2	41
35	Genetic basis of cystinosis in Turkish patients: a single-center experience. Pediatric Nephrology, 2012, 27, 115-121.	1.7	41
36	Management of congenital nephrotic syndrome: consensus recommendations of the ERKNet-ESPN Working Group. Nature Reviews Nephrology, 2021, 17, 277-289.	9.6	41

#	Article	IF	CITATIONS
37	CLCN5 mutation (R347X) associated with hypokalaemic metabolic alkalosis in a Turkish child: an unusual presentation of Dent's disease. Nephrology Dialysis Transplantation, 2005, 20, 1476-1479.	0.7	37
38	Mutations in ANKS6 Cause a Nephronophthisis-Like Phenotype with ESRD. Journal of the American Society of Nephrology: JASN, 2014, 25, 1653-1661.	6.1	37
39	Primary coenzyme Q10 (CoQ10) deficiencies and related nephropathies. Pediatric Nephrology, 2014, 29, 961-969.	1.7	37
40	Relationship of leptin and insulin-like growth factorÂl to nutritional status in hemodialyzed children. Pediatric Nephrology, 2003, 18, 1255-1259.	1.7	35
41	Neonatal onset atypical hemolytic uremic syndrome successfully treated with eculizumab. Pediatric Nephrology, 2013, 28, 155-158.	1.7	35
42	Turkish pediatric atypical hemolytic uremic syndrome registry: initial analysis of 146 patients. BMC Nephrology, 2017, 18, 6.	1.8	35
43	The distribution of juvenile idiopathic arthritis in the eastern Mediterranean: results from the registry of the Turkish Paediatric Rheumatology, 2011, 29, 111-6.	0.8	35
44	Carotid intima-media thickness in children and young adults with renal transplant: Internal carotid artery vs. common carotid artery. Pediatric Transplantation, 2007, 11, 888-894.	1.0	33
45	An international cohort study spanning five decades assessed outcomes of nephropathic cystinosis. Kidney International, 2021, 100, 1112-1123.	5.2	31
46	Three sibs diagnosed prenatally with situs inversus totalis, renal and pancreatic dysplasia, and cysts. , 2000, 90, 185-187.		29
47	Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatric Nephrology, 2015, 30, 1279-1287.	1.7	29
48	Extra-Renal manifestations of atypical hemolytic uremic syndrome in children. Pediatric Nephrology, 2018, 33, 1395-1403.	1.7	29
49	Genetic aspects of congenital nephrotic syndrome: a consensus statement from the ERKNet–ESPN inherited glomerulopathy working group. European Journal of Human Genetics, 2020, 28, 1368-1378.	2.8	28
50	Post-transplant hypertension in pediatric kidney transplant recipients. Pediatric Nephrology, 2014, 29, 1075-1080.	1.7	25
51	Timing of renal replacement therapy does not influence survival and growth in children with congenital nephrotic syndrome caused by mutations in NPHS1: data from the ESPN/ERA-EDTA Registry. Pediatric Nephrology, 2016, 31, 2317-2325.	1.7	25
52	Low renal but high extrarenal phenotype variability in Schimke immuno-osseous dysplasia. PLoS ONE, 2017, 12, e0180926.	2.5	25
53	Influence of Serum Amyloid A (SAA1) and SAA2 gene polymorphisms on renal amyloidosis, and on SAA/C-reactive protein values in patients with familial mediterranean fever in the Turkish population. Journal of Rheumatology, 2004, 31, 1139-42.	2.0	25
54	A novel CFHR5 mutation associated with C3 glomerulonephritis in a Turkish girl. Journal of Nephrology, 2014, 27, 457-460.	2.0	24

#	Article	IF	Citations
55	Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production. American Journal of Physiology - Renal Physiology, 2016, 310, F895-F908.	2.7	24
56	Familial Mediterranean fever patients homozygous for E148Q variant may have milder disease. International Journal of Rheumatic Diseases, 2018, 21, 1857-1862.	1.9	24
57	Bone mineral density in children with familial Mediterranean fever. Clinical Rheumatology, 2004, 23, 230-234.	2.2	22
58	Response to Early Coenzyme Q10 Supplementation Is not Sustained in CoQ10 Deficiency Caused by CoQ2 Mutation. Pediatric Neurology, 2018, 88, 71-74.	2.1	20
59	Sibs diagnosed prenatally with situs inversus totalis, renal and pancreatic dysplasia, and cysts: A new syndrome?., 1999, 82, 166-169.		18
60	Monocyte chemoattractant protein-1 and interleukin-8 levels in children with acute poststreptococcal glomerulonephritis. Pediatric Nephrology, 2004, 19, 864-8.	1.7	18
61	An immunohistochemical approach to detect oncogenic CTNNB1 mutations in primary neoplastic tissues. Laboratory Investigation, 2019, 99, 128-137.	3.7	18
62	An unusual cause of acute renal failure: renal lymphoma. Pediatric Nephrology, 2004, 19, 912-914.	1.7	17
63	Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney International, 2022, 102, 604-612.	5.2	17
64	Successful renal transplantation in a child with ANCA-associated microscopic polyangiitis. Pediatric Nephrology, 2003, 18, 696-699.	1.7	15
65	The role of apoptosis in childhood Henoch?Schonlein purpura. Clinical Rheumatology, 2003, 22, 265-267.	2.2	14
66	Eye involvement in children with primary focal segmental glomerulosclerosis. Pediatric Nephrology, 2008, 23, 421-427.	1.7	13
67	A novel CLCN7 mutation resulting in a most severe form of autosomal recessive osteopetrosis. European Journal of Pediatrics, 2009, 168, 1449-1454.	2.7	13
68	Rituximab for Children With Difficult-to-Treat Nephrotic Syndrome: Its Effects on Disease Progression and Growth. Frontiers in Pediatrics, 2019, 7, 313.	1.9	13
69	Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney International, 2022, 102, 592-603.	5.2	12
70	Long-term renal survival of paediatric patients with lupus nephritis. Nephrology Dialysis Transplantation, 2022, 37, 1069-1077.	0.7	11
71	C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma. Clinical Rheumatology, 2012, 31, 1123-1126.	2.2	10
72	Clinicopathological and immunohistological features in childhood IgA nephropathy: a single-centre experience. CKJ: Clinical Kidney Journal, 2013, 6, 169-175.	2.9	10

#	Article	IF	Citations
73	First-Line, Early and Long-Term Eculizumab Therapy in Atypical Hemolytic Uremic Syndrome: A Case Series in Pediatric Patients. Paediatric Drugs, 2016, 18, 413-420.	3.1	10
74	Epidermolysis Bullosa with Pyloric Atresia and Aplasia Cutis in a Newborn Due to Homozygous Mutation in ITGB4. Fetal and Pediatric Pathology, 2017, 36, 332-339.	0.7	10
75	Atypical Hemolytic Uremic Syndrome in Children Aged <2 Years. Nephron, 2018, 139, 211-218.	1.8	10
76	<i>MCP1</i> 2518 A/G polymorphism affects progression of childhood focal segmental glomerulosclerosis. Renal Failure, 2015, 37, 1435-1439.	2.1	9
77	<scp>CD</scp> 80 expression and infiltrating regulatory T cells in idiopathic nephrotic syndrome of childhood. Pediatrics International, 2019, 61, 1250-1256.	0.5	9
78	Cerebral sinovenous thrombosis in a child with steroid sensitive nephrotic syndrome. European Journal of Pediatrics, 2007, 166, 757-758.	2.7	8
79	Right atrial thrombosis complicating renal transplantation in a child. Pediatric Transplantation, 2008, 12, 251-255.	1.0	8
80	Endothelial Dysfunction and Increased Responses to Renal Nerve Stimulation in Rat Kidneys during Rhabdomyolysis-Induced Acute Renal Failure: Role of Hydroxyl Radical. Renal Failure, 2012, 34, 211-220.	2.1	8
81	Treatment of severe Henoch-Schönlein nephritis: justifying more immunosuppression. Turkish Journal of Pediatrics, 2009, 51, 551-5.	0.6	7
82	Mitochondria-targeted CoQ10 loaded PLGA-b-PEG-TPP nanoparticles: Their effects on mitochondrial functions of COQ8B HK-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 22-33.	4.3	7
83	Predictors of kidney complications and analysis of hypertension in children with allogeneic hematopoietic stem cell transplantation. Pediatric Nephrology, 2023, 38, 461-469.	1.7	7
84	A rare cause of nephrotic syndromeâ€"sphingosine-1-phosphate lyase (SGPL1) deficiency: 6 cases and a review of the literature. Pediatric Nephrology, 2023, 38, 711-719.	1.7	7
85	Helicobacter pylori infection in Turkish children with familial Mediterranean fever: is it a cause of persistent inflammation?. Clinical Rheumatology, 2004, 23, 186-187.	2.2	6
86	Diagnostic validity of colchicine in patients with Familial Mediterranean fever. Clinical Rheumatology, 2014, 33, 969-974.	2.2	6
87	Surgical management of renovascular hypertension in children and young adults: a 13-year experience. Interactive Cardiovascular and Thoracic Surgery, 2019, 29, 746-752.	1.1	6
88	Takayasu arteritis in a 4-year-old girl: case report and brief overview of the pediatric literature. Turkish Journal of Pediatrics, 2012, 54, 536-9.	0.6	6
89	Cyclosporine drug monitoring with C0 and C2 concentrations in children with stable renal allograft function. Pediatric Transplantation, 2006, 10, 168-171.	1.0	5
90	A homozygous <scp><i>HOXA11</i></scp> variation as a potential novel cause of autosomal recessive congenital anomalies of the kidney and urinary tract. Clinical Genetics, 2020, 98, 390-395.	2.0	5

#	Article	IF	CITATIONS
91	Apoptosis and proliferation in childhood acute proliferative glomerulonephritis. Pediatric Nephrology, 2005, 20, 1572-1577.	1.7	4
92	COL4A3 mutation is an independent risk factor for poor prognosis in children with Alport syndrome. Pediatric Nephrology, 2020, 35, 1941-1952.	1.7	4
93	Renal Biopsy Prognostic Findings in Children With Atypical Hemolytic Uremic Syndrome. Pediatric and Developmental Pathology, 2020, 23, 362-371.	1.0	4
94	A splice site mutation in the <scp><i>TSEN2</i></scp> causes a new syndrome with craniofacial and central nervous system malformations, and atypical hemolytic uremic syndrome. Clinical Genetics, 2022, 101, 346-358.	2.0	4
95	Eculizumab treatment and discontinuation in pediatric patients with atypical hemolytic uremic syndrome: a multicentric retrospective study. Journal of Nephrology, 2022, , 1.	2.0	3
96	Mitigation of portal fibrosis and cholestatic liver disease in ⟨i⟩ANKS6⟨/i⟩ â€deficient livers by macrophage depletion. FASEB Journal, 2022, 36, e22157.	0.5	3
97	Clinical course of primary focal segmental glomerulosclerosis (FSGS) in Turkish children: a report from the Turkish Pediatric Nephrology FSGS Study Group. Turkish Journal of Pediatrics, 2010, 52, 255-61.	0.6	3
98	Role of CXCR1 (CKR-1) in Inflammation of Experimental Mesangioproliferative Glomerulonephritis. Renal Failure, 2013, 35, 380-385.	2.1	2
99	Transplantation in pediatric aHUS within the era of eculizumab therapy. Pediatric Transplantation, 2021, 25, e13914.	1.0	2
100	Gastric duplication cyst in an infant with Finnish-type congenital nephrotic syndrome: concurrence or coincidence?. Acta Clinica Belgica, 2021, 76, 155-157.	1.2	2
101	Outcome of diacylglycerol kinase epsilon–mediated hemolytic uremic syndrome in an infant. Kidney International, 2021, 99, 1500-1501.	5.2	2
102	Hemolytic Uremic Syndrome in Children. , 2023, 56, 415-422.		2
103	Acute kidney injury in a patient with COVID-19: Answers. Pediatric Nephrology, 2021, 36, 4111-4113.	1.7	1
104	A broad clinical spectrum of PLCl $\mu 1$ -related kidney disease and intrafamilial variability. Pediatric Nephrology, 2022, , 1.	1.7	1
105	Acute kidney injury in a patient with COVID-19: Questions. Pediatric Nephrology, 2021, 36, 4109-4110.	1.7	0
106	The Kidney in Mitochondrial Diseases. , 2021, , 1-13.		0