Thomas Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752522/publications.pdf

Version: 2024-02-01

52 4,756 27 47
papers citations h-index g-index

54 54 54 9306
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology. Annual Review of Pharmacology and Toxicology, 2022, 62, 551-571.	9.4	8
2	Metabolomic and transcriptomic signatures of chemogenetic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H451-H465.	3.2	14
3	Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes. Free Radical Biology and Medicine, 2021, 166, 90-103.	2.9	30
4	AQP8 is a crucial H2O2 transporter in insulin-producing RINm5F cells. Redox Biology, 2021, 43, 101962.	9.0	26
5	The importance of aquaporin-8 for cytokine-mediated toxicity in rat insulin-producing cells. Free Radical Biology and Medicine, 2021, 174, 135-143.	2.9	8
6	Complexities of the chemogenetic toolkit: Differential mDAAO activation by d-amino substrates and subcellular targeting. Free Radical Biology and Medicine, 2021, 177, 132-142.	2.9	8
7	Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radical Biology and Medicine, 2021, 177, 360-369.	2.9	14
8	In vivo applications of chemogenetics in redox (patho)biology. , 2020, , 97-112.		0
9	Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Science Translational Medicine, 2020, 12, .	12.4	39
10	Redox \tilde{A} la carte: Novel chemogenetic models of heart failure. British Journal of Pharmacology, 2020, 177, 3162-3167.	5.4	7
11	Differential endothelial signaling responses elicited by chemogenetic H2O2 synthesis. Redox Biology, 2020, 36, 101605.	9.0	24
12	Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine, 2020, 382, 1653-1659.	27.0	1,732
13	Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metabolism, 2020, 31, 642-653.e6.	16.2	202
14	Yes (again) to local NO. Nature Chemical Biology, 2020, 16, 606-607.	8.0	0
15	Reversal of heart failure in a chemogenetic model of persistent cardiac redox stress. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H617-H626.	3.2	22
16	Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20210-20217.	7.1	40
17	Which Antioxidant System Shapes Intracellular H ₂ O ₂ Gradients?. Antioxidants and Redox Signaling, 2019, 31, 664-670.	5.4	42
18	Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nature Communications, 2018, 9, 4044.	12.8	80

#	Article	lF	CITATIONS
19	Introduction to Special Issue "Redox regulation of cardiovascular signaling in health and disease― Free Radical Biology and Medicine, 2017, 109, 1-3.	2.9	1
20	Insulin-dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from NADPH-oxidase isoforms NOX2 and NOX4. Free Radical Biology and Medicine, 2017, 113, 16-25.	2.9	33
21	Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood, 2016, 127, 1468-1480.	1.4	34
22	The Future of Vascular Biology and Medicine. Circulation, 2016, 133, 2603-2609.	1.6	16
23	Novel role for retinol-binding protein 4 in the regulation of blood pressure. FASEB Journal, 2015, 29, 3133-3140.	0.5	33
24	Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nature Chemical Biology, 2015, 11, 332-338.	8.0	50
25	Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nature Communications, 2015, 6, 8966.	12.8	44
26	Insulin Attenuates Cardiac Myocyte Contractility via NADPH Oxidase: Implications for Diabetic Cardiomyopathy. FASEB Journal, 2015, 29, 1025.9.	0.5	0
27	A Central Role for H 2 O 2 in Insulin Signal Transduction in Cardiac Myocytes. FASEB Journal, 2015, 29, 728.33.	0.5	0
28	Central role for hydrogen peroxide in P2Y1 ADP receptor-mediated cellular responses in vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3383-3388.	7.1	22
29	Endothelial PGC-1α Mediates Vascular Dysfunction in Diabetes. Cell Metabolism, 2014, 19, 246-258.	16.2	135
30	Caveolin-1 Is a Critical Determinant of Autophagy, Metabolic Switching, and Oxidative Stress in Vascular Endothelium. PLoS ONE, 2014, 9, e87871.	2.5	102
31	In Vivo Imaging of Nitric Oxide and Hydrogen Peroxide in Cardiac Myocytes. Methods in Enzymology, 2013, 528, 61-78.	1.0	7
32	Role of PTEN in modulation of ADP-dependent signaling pathways in vascular endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2586-2595.	4.1	4
33	R Is for Arginine. Circulation, 2013, 128, 1400-1404.	1.6	30
34	Caveolinâ€1 is a critical determinant of autophagy and oxidative stress. FASEB Journal, 2013, 27, 831.21.	0.5	0
35	MARCKS protein mediates hydrogen peroxide regulation of endothelial permeability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14864-14869.	7.1	34
36	Subcellular Localization of Oxidants and Redox Modulation of Endothelial Nitric Oxide Synthase. Circulation Journal, 2012, 76, 2497-2512.	1.6	58

3

#	Article	IF	Citations
37	Angiotensin-II and MARCKS. Journal of Biological Chemistry, 2012, 287, 29147-29158.	3.4	24
38	Role of Ca2+ in the Control of H2O2-Modulated Phosphorylation Pathways Leading to eNOS Activation in Cardiac Myocytes. PLoS ONE, 2012, 7, e44627.	2.5	17
39	Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15792-15797.	7.1	76
40	Cellular signaling and NO production. Pflugers Archiv European Journal of Physiology, 2010, 459, 807-816.	2.8	230
41	ADP Signaling in Vascular Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 32209-32224.	3.4	26
42	Regulation of VASP phosphorylation in cardiac myocytes: differential regulation by cyclic nucleotides and modulation of protein expression in diabetic and hypertrophic heart. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1697-H1710.	3.2	35
43	Life history of eNOS: Partners and pathways. Cardiovascular Research, 2007, 75, 247-260.	3.8	347
44	The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. Journal of Clinical Investigation, 2007, 117, 1961-1967.	8.2	143
45	Dephosphorylation of Endothelial Nitric-oxide Synthase by Vascular Endothelial Growth Factor. Journal of Biological Chemistry, 2002, 277, 29669-29673.	3.4	164
46	Subcellular Targeting and Agonist-induced Site-specific Phosphorylation of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2002, 277, 39554-39560.	3.4	94
47	In Vivo Electrophysiologic Studies in Endothelial Nitric Oxide Synthase (eNOS)-Deficient Mice. Journal of Cardiovascular Electrophysiology, 2001, 12, 1295-1301.	1.7	35
48	Formation of peroxynitrite in vascular endothelial cells exposed to cyclosporine A. FASEB Journal, 2001, 15, 1291-1293.	0.5	47
49	Dynamic Regulation of Endothelial Nitric Oxide Synthase: Complementary Roles of Dual Acylation and Caveolin Interactionsâ€. Biochemistry, 1998, 37, 193-200.	2.5	133
50	The role of palmitoyl-protein thioesterase in the palmitoylation of endothelial nitric oxide synthase. FEBS Letters, 1997, 405, 356-362.	2.8	12
51	EXPLANTED VEIN GRAFTS WITH AN INTACT ENDOTHELIUM DEMONSTRATE REDUCED FOCAL EXPRESSION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE SPECIFIC TO ATHEROSCLEROTIC SITES. , 1996, 179, 197-203.		33
52	Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Letters, 1992, 307, 287-293.	2.8	440