Thomas Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine, 2020, 382, 1653-1659.	13.9	1,732
2	Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Letters, 1992, 307, 287-293.	1.3	440
3	Life history of eNOS: Partners and pathways. Cardiovascular Research, 2007, 75, 247-260.	1.8	347
4	Cellular signaling and NO production. Pflugers Archiv European Journal of Physiology, 2010, 459, 807-816.	1.3	230
5	Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metabolism, 2020, 31, 642-653.e6.	7.2	202
6	Dephosphorylation of Endothelial Nitric-oxide Synthase by Vascular Endothelial Growth Factor. Journal of Biological Chemistry, 2002, 277, 29669-29673.	1.6	164
7	The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. Journal of Clinical Investigation, 2007, 117, 1961-1967.	3.9	143
8	Endothelial PGC-1Î \pm Mediates Vascular Dysfunction in Diabetes. Cell Metabolism, 2014, 19, 246-258.	7.2	135
9	Dynamic Regulation of Endothelial Nitric Oxide Synthase:Â Complementary Roles of Dual Acylation and Caveolin Interactionsâ€. Biochemistry, 1998, 37, 193-200.	1.2	133
10	Caveolin-1 Is a Critical Determinant of Autophagy, Metabolic Switching, and Oxidative Stress in Vascular Endothelium. PLoS ONE, 2014, 9, e87871.	1.1	102
11	Subcellular Targeting and Agonist-induced Site-specific Phosphorylation of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2002, 277, 39554-39560.	1.6	94
12	Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nature Communications, 2018, 9, 4044.	5.8	80
13	Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proceedings of the United States of America, 2011, 108, 15792-15797.	3.3	76
14	Subcellular Localization of Oxidants and Redox Modulation of Endothelial Nitric Oxide Synthase. Circulation Journal, 2012, 76, 2497-2512.	0.7	58
15	Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nature Chemical Biology, 2015, 11, 332-338.	3.9	50
16	Formation of peroxynitrite in vascular endothelial cells exposed to cyclosporine A. FASEB Journal, 2001, 15, 1291-1293.	0.2	47
17	Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nature Communications, 2015, 6, 8966.	5.8	44
18	Which Antioxidant System Shapes Intracellular H ₂ O ₂ Gradients?. Antioxidants and Redox Signaling, 2019, 31, 664-670.	2.5	42

THOMAS MICHEL

#	Article	IF	CITATIONS
19	Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20210-20217.	3.3	40
20	Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Science Translational Medicine, 2020, 12, .	5.8	39
21	In Vivo Electrophysiologic Studies in Endothelial Nitric Oxide Synthase (eNOS)-Deficient Mice. Journal of Cardiovascular Electrophysiology, 2001, 12, 1295-1301.	0.8	35
22	Regulation of VASP phosphorylation in cardiac myocytes: differential regulation by cyclic nucleotides and modulation of protein expression in diabetic and hypertrophic heart. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1697-H1710.	1.5	35
23	MARCKS protein mediates hydrogen peroxide regulation of endothelial permeability. Proceedings of the United States of America, 2012, 109, 14864-14869.	3.3	34
24	Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation. Blood, 2016, 127, 1468-1480.	0.6	34
25	EXPLANTED VEIN GRAFTS WITH AN INTACT ENDOTHELIUM DEMONSTRATE REDUCED FOCAL EXPRESSION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE SPECIFIC TO ATHEROSCLEROTIC SITES. , 1996, 179, 197-203.		33
26	Novel role for retinol-binding protein 4 in the regulation of blood pressure. FASEB Journal, 2015, 29, 3133-3140.	0.2	33
27	Insulin-dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from NADPH-oxidase isoforms NOX2 and NOX4. Free Radical Biology and Medicine, 2017, 113, 16-25.	1.3	33
28	R Is for Arginine. Circulation, 2013, 128, 1400-1404.	1.6	30
29	Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes. Free Radical Biology and Medicine, 2021, 166, 90-103.	1.3	30
30	ADP Signaling in Vascular Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 32209-32224.	1.6	26
31	AQP8 is a crucial H2O2 transporter in insulin-producing RINm5F cells. Redox Biology, 2021, 43, 101962.	3.9	26
32	Angiotensin-II and MARCKS. Journal of Biological Chemistry, 2012, 287, 29147-29158.	1.6	24
33	Differential endothelial signaling responses elicited by chemogenetic H2O2 synthesis. Redox Biology, 2020, 36, 101605.	3.9	24
34	Central role for hydrogen peroxide in P2Y1 ADP receptor-mediated cellular responses in vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3383-3388.	3.3	22
35	Reversal of heart failure in a chemogenetic model of persistent cardiac redox stress. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H617-H626.	1.5	22
36	Role of Ca2+ in the Control of H2O2-Modulated Phosphorylation Pathways Leading to eNOS Activation in Cardiac Myocytes. PLoS ONE, 2012, 7, e44627.	1.1	17

THOMAS MICHEL

#	Article	IF	CITATIONS
37	The Future of Vascular Biology and Medicine. Circulation, 2016, 133, 2603-2609.	1.6	16
38	Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radical Biology and Medicine, 2021, 177, 360-369.	1.3	14
39	Metabolomic and transcriptomic signatures of chemogenetic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H451-H465.	1.5	14
40	The role of palmitoyl-protein thioesterase in the palmitoylation of endothelial nitric oxide synthase. FEBS Letters, 1997, 405, 356-362.	1.3	12
41	Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology, 2022, 62, 551-571.	4.2	8
42	The importance of aquaporin-8 for cytokine-mediated toxicity in rat insulin-producing cells. Free Radical Biology and Medicine, 2021, 174, 135-143.	1.3	8
43	Complexities of the chemogenetic toolkit: Differential mDAAO activation by d-amino substrates and subcellular targeting. Free Radical Biology and Medicine, 2021, 177, 132-142.	1.3	8
44	In Vivo Imaging of Nitric Oxide and Hydrogen Peroxide in Cardiac Myocytes. Methods in Enzymology, 2013, 528, 61-78.	0.4	7
45	Redox à la carte: Novel chemogenetic models of heart failure. British Journal of Pharmacology, 2020, 177, 3162-3167.	2.7	7
46	Role of PTEN in modulation of ADP-dependent signaling pathways in vascular endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2586-2595.	1.9	4
47	Introduction to Special Issue "Redox regulation of cardiovascular signaling in health and diseaseâ€∙ Free Radical Biology and Medicine, 2017, 109, 1-3.	1.3	1
48	In vivo applications of chemogenetics in redox (patho)biology. , 2020, , 97-112.		0
49	Caveolinâ€l is a critical determinant of autophagy and oxidative stress. FASEB Journal, 2013, 27, 831.21.	0.2	Ο
50	Insulin Attenuates Cardiac Myocyte Contractility via NADPH Oxidase: Implications for Diabetic Cardiomyopathy. FASEB Journal, 2015, 29, 1025.9.	0.2	0
51	A Central Role for H 2 O 2 in Insulin Signal Transduction in Cardiac Myocytes. FASEB Journal, 2015, 29, 728.33.	0.2	0
52	Yes (again) to local NO. Nature Chemical Biology, 2020, 16, 606-607.	3.9	0