Rubina Ajdary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752464/publications.pdf

Version: 2024-02-01

516561 642610 23 897 16 23 citations g-index h-index papers 23 23 23 1066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pickering emulgels reinforced with host–guest supramolecular inclusion complexes for high fidelity direct ink writing. Materials Horizons, 2022, 9, 835-840.	6.4	12
2	Bacterial nanocellulose enables auxetic supporting implants. Carbohydrate Polymers, 2022, 284, 119198.	5.1	12
3	Direct Ink Writing of Biocompatible Nanocellulose and Chitosan Hydrogels for Implant Mesh Matrices. ACS Polymers Au, 2022, 2, 97-107.	1.7	16
4	Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills. ACS Applied Polymer Materials, 2022, 4, 2908-2916.	2.0	15
5	High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. International Journal of Biological Macromolecules, 2022, 209, 2020-2031.	3.6	26
6	Structured Ultraâ€Flyweight Aerogels by Interfacial Complexation: Selfâ€Assembly Enabling Multiscale Designs (Small 20/2022). Small, 2022, 18, .	5.2	1
7	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	11.1	117
8	Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils. Carbohydrate Polymers, 2021, 254, 117279.	5.1	40
9	Cellulose dissolution in aqueous NaOH–ZnO: cellulose reactivity and the role of ZnO. Cellulose, 2021, 28, 1267-1281.	2.4	11
10	Selective Laser Sintering of Lignin-Based Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 2727-2735.	3.2	36
11	Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6188-6200.	4.0	51
12	Plantâ€Derived Hydrogels: Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170218.	11.1	2
13	Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydrate Polymers, 2021, 266, 118114.	5.1	50
14	Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Materials Science and Engineering C, 2021, 130, 112424.	3.8	35
15	3D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA). ACS Sustainable Chemistry and Engineering, 2021, 9, 13979-13987.	3.2	5
16	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	2.6	75
17	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	1.7	19
18	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	7.8	53

#	Article	IF	CITATIONS
19	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 1 Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 Dr	10 Tf 50 7 4.0	47 Td (seba 57
20	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	7.8	60
21	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	2.6	81
22	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	2.6	68
23	Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27287-27296.	4.0	55