Rubina Ajdary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	21.0	117
2	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	5.4	81
3	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	5.4	75
4	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	5.4	68
5	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	14.9	60
6	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Interfaces, 2020, 12, 6899-6909.	547 Td (s 8.0	ebacate)/Na 57
7	Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. ACS Applied Materials & Interfaces, 2018, 10, 27287-27296.	8.0	55
8	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
9	Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 6188-6200.	8.0	51
10	Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydrate Polymers, 2021, 266, 118114.	10.2	50
11	Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils. Carbohydrate Polymers, 2021, 254, 117279.	10.2	40
12	Selective Laser Sintering of Lignin-Based Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 2727-2735.	6.7	36
13	Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Materials Science and Engineering C, 2021, 130, 112424.	7.3	35
14	High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. International Journal of Biological Macromolecules, 2022, 209, 2020-2031.	7.5	26
15	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	3.6	19
16	Direct Ink Writing of Biocompatible Nanocellulose and Chitosan Hydrogels for Implant Mesh Matrices. ACS Polymers Au, 2022, 2, 97-107.	4.1	16
17	Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills. ACS Applied Polymer Materials, 2022, 4, 2908-2916.	4.4	15
18	Pickering emulgels reinforced with host–guest supramolecular inclusion complexes for high fidelity direct ink writing. Materials Horizons, 2022, 9, 835-840.	12.2	12

RUBINA AJDARY

#	Article	IF	CITATIONS
19	Bacterial nanocellulose enables auxetic supporting implants. Carbohydrate Polymers, 2022, 284, 119198.	10.2	12
20	Cellulose dissolution in aqueous NaOH–ZnO: cellulose reactivity and the role of ZnO. Cellulose, 2021, 28, 1267-1281.	4.9	11
21	3D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA). ACS Sustainable Chemistry and Engineering, 2021, 9, 13979-13987.	6.7	5
22	Plantâ€Derived Hydrogels: Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170218.	21.0	2
23	Structured Ultraâ€Flyweight Aerogels by Interfacial Complexation: Selfâ€Assembly Enabling Multiscale Designs (Small 20/2022). Small, 2022, 18, .	10.0	1