Ekaterina M Budynina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in ring-forming reactions of donor–acceptor cyclopropanes. Mendeleev Communications, 2011, 21, 293-301.	0.6	229
2	Donor–Acceptor Cyclopropanes as Three arbon Components in a [4+3] Cycloaddition Reaction with 1,3â€Diphenylisobenzofuran. Angewandte Chemie - International Edition, 2008, 47, 1107-1110.	7.2	156
3	Ring Opening of Donor–Acceptor Cyclopropanes with N-NucleoÂphiles. Synthesis, 2017, 49, 3035-3068.	1.2	146
4	Ring Opening of Donor–Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of Nâ€Heterocycles. Chemistry - A European Journal, 2015, 21, 4975-4987.	1.7	136
5	(3 + 3)-Cyclodimerization of Donor–Acceptor Cyclopropanes. Three Routes to Six-Membered Rings. Journal of Organic Chemistry, 2011, 76, 8852-8868.	1.7	71
6	Lewis Acid Catalyzed Reactions of Donor–Acceptor Cyclopropanes with Anthracenes. European Journal of Organic Chemistry, 2008, 2008, 5329-5335.	1.2	68
7	Lewis Acidâ€Catalyzed Isomerization of 2â€Arylcyclopropaneâ€1,1â€dicarboxylates: A New Efficient Route to 2â€Styrylmalonates. Advanced Synthesis and Catalysis, 2010, 352, 3179-3184.	2.1	66
8	Lewis acid-catalyzed reactions of donor–acceptor cyclopropanes with furan derivatives. Tetrahedron, 2009, 65, 5385-5392.	1.0	60
9	Lewis Acidâ€Catalyzed [3+4] Annulation of 2â€(Heteroaryl)―cyclopropaneâ€1,1â€dicarboxylates with Cyclopentadiene. Advanced Synthesis and Catalysis, 2011, 353, 1125-1134.	2.1	54
10	Duality of Donor–Acceptor Cyclopropane Reactivity as a Three arbon Component in Fiveâ€Membered Ring Construction: [3+2] Annulation Versus [3+2] Cycloaddition. Chemistry - A European Journal, 2013, 19, 6586-6590.	1.7	53
11	From Umpolung to Alternation: Modified Reactivity of Donor–Acceptor Cyclopropanes Towards Nucleophiles in Reaction with Nitroalkanes. Chemistry - A European Journal, 2016, 22, 3692-3696.	1.7	51
12	[3+2] Cyclodimerization of 2-arylcyclopropane-1,1-diesters. Lewis acid induced reversion of cyclopropane umpolung. Tetrahedron Letters, 2011, 52, 4421-4425.	0.7	41
13	Lewis and BrÃ,nsted Acid Induced (3 + 2)-Annulation of Donor–Acceptor Cyclopropanes to Alkynes: Indene Assembly. Organic Letters, 2015, 17, 770-773.	2.4	40
14	Reaction of Corey Ylide with α,β-Unsaturated Ketones: Tuning of Chemoselectivity toward Dihydrofuran Synthesis. Organic Letters, 2014, 16, 2830-2833.	2.4	39
15	A bioinspired route to indanes and cyclopentannulated hetarenes via (3+2)-cyclodimerization of donor–acceptor cyclopropanes. Chemical Communications, 2013, 49, 11482.	2.2	37
16	3-(2-Azidoethyl)oxindoles: Advanced Building Blocks for One-Pot Assembly of Spiro[pyrrolidine-3,3′-oxindoles]. Journal of Organic Chemistry, 2017, 82, 5689-5701.	1.7	36
17	Ring opening of 1,1-dinitrocyclopropane by addition of C, N, O and S nucleophiles. Tetrahedron Letters, 2006, 47, 647-649.	0.7	35
18	Domino Cyclodimerization of Indoleâ€Derived Donor–Acceptor Cyclopropanes: Oneâ€6tep Construction of the Pentaleno[1,6â€ <i>a</i> , <i>b</i>]indole Skeleton. Chemistry - A European Journal, 2011, 17, 11738-11742.	1.7	31

#	Article	IF	CITATIONS
19	Donor–acceptor cyclopropanes as <i>ortho</i> -quinone methide equivalents in formal (4 +) Tj ETQq1 1 0.784	·314 rgBT 1.5	/Overlock 10
20	Nucleophilic Ring Opening of Donor–Acceptor Cyclopropanes with the Cyanate Ion: Access to Spiro[pyrrolidone-3,3′-oxindoles]. Journal of Organic Chemistry, 2018, 83, 8695-8709.	1.7	29
21	Formal [3 + 2]-Cycloaddition of Donor–Acceptor Cyclopropanes to 1,3-Dienes: Cyclopentane Assembly. Journal of Organic Chemistry, 2015, 80, 12212-12223.	1.7	28
22	A Straightforward Approach to Tetrahydroindolo[3,2â€ <i>b</i>]carbazoles and 1â€Indolyltetrahydrocarbazoles through [3+3] Cyclodimerization of Indoleâ€Derived Cyclopropanes. Chemistry - A European Journal, 2016, 22, 1223-1227.	1.7	27
23	<i>aza</i> -Wittig Reaction with Nitriles: How Carbonyl Function Switches from Reacting to Activating. Organic Letters, 2019, 21, 1087-1092.	2.4	25
24	Tetranitromethane as an efficient reagent for the conversion of epoxides into Î ² -hydroxy nitrates. Tetrahedron Letters, 2008, 49, 3935-3938.	0.7	24
25	Chameleon-Like Activating Nature of the Spirooxindole Group in Donor–Acceptor Cyclopropanes. Organic Letters, 2019, 21, 9795-9799.	2.4	24
26	Stereocontrolled [3+2] Cycloaddition of Donor–Acceptor Cyclopropanes to Iminooxindoles: Access to Spiro[oxindole-3,2′-pyrrolidines]. Journal of Organic Chemistry, 2019, 84, 3340-3356.	1.7	22
27	Domino Staudinger/ <i>aza</i> â€Wittig/Mannich Reaction: An Approach to Diversity of Di―and Tetrahydropyrrole Scaffolds. Chemistry - A European Journal, 2016, 22, 17967-17971.	1.7	19
28	Regioselective Hydrogenolysis of Donor–Acceptor Cyclopropanes with Zn-AcOH Reductive System. Journal of Organic Chemistry, 2017, 82, 9537-9549.	1.7	16
29	Shortcut Approach to Cyclopenta[b]indoles by [3+2] Cyclodimerization of Indole-Derived Cyclopropanes. Synlett, 2014, 25, 2289-2292.	1.0	15
30	Three-component reactions of polynitromethanes with alkynes. The first synthesis of gem-dinitroaziridines. Tetrahedron Letters, 2005, 46, 657-659.	0.7	14
31	Reaction of donor-acceptor cyclopropanes with 1,3-diphenylisobenzofuran. Lewis acid effect on the reaction pathway. Russian Chemical Bulletin, 2013, 62, 2407-2423.	0.4	14
32	Concise approach to pyrrolizino[1,2-b]indoles from indole-derived donor–acceptor cyclopropanes. RSC Advances, 2016, 6, 62014-62018.	1.7	13
33	Simple assembly of polysubstituted pyrazoles and isoxazoles via ring closure–ring opening domino reaction of 3-acyl-4,5-dihydrofurans with hydrazines and hydroxylamine. Organic and Biomolecular Chemistry, 2016, 14, 2905-2915.	1.5	13
34	The first synthesis of nitro-substituted cyclopropanes and spiropentanes via oxidation of the corresponding amino derivatives. Tetrahedron Letters, 2009, 50, 2793-2796.	0.7	10
35	Domino Michael/aza-Wittig reaction in the diastereoselective construction of spiro[azepane-4,3′-oxindoles]. Tetrahedron Letters, 2019, 60, 1952-1955.	0.7	8
36	Phosphazenomalonates as Catalysts and Reactants in (4+3) Annulation to Acrolein. Organic Letters, 2019, 21, 4464-4468.	2.4	8

#	Article	IF	CITATIONS
37	A new three-component one pot reaction of trinitromethane, epoxides and alkenes via dinitronitronates: synthesis of highly functionalized 3,3-dinitroisoxazolidines. Tetrahedron, 2008, 64, 3548-3553.	1.0	7
38	New domino dimerization of cyclopropylindoles: synthesis of 1,3-bis(indolyl)cyclopentanes. Chemistry of Heterocyclic Compounds, 2015, 51, 936-939.	0.6	6
39	Synthesis of Functionalized Quinolines from 4â€(<i>o</i> â€Nitroaryl)â€Substituted 3â€Acylâ€4,5â€Dihydrofuran Reductive Cyclization and C=C Bond Cleavage. European Journal of Organic Chemistry, 2017, 2017, 2814-2823.	s: 1.2	6
40	Domino construction of a bullataketal core <i>via</i> double bond cleavage in activated dihydrofurans. Organic Chemistry Frontiers, 2018, 5, 1655-1663.	2.3	6
41	One-Pot Synthesis of γ-Azidobutyronitriles and Their Intramolecular Cycloadditions. Synthesis, 2020, 52, 3356-3373.	1.2	5
42	Reductive Knoevenagel Condensation with the Zn–AcOH System. Synthesis, 2021, 53, 1285-1291.	1.2	4
43	Acetylenes and nitriles as unconventional reactants for aza-Wittig reactions. Mendeleev Communications, 2020, 30, 687-696.	0.6	3
44	[3+2] Cycloaddition of Diazocarbonyl Compounds to 1,1-Dinitroethenes: Synthesis of Functionalized gem-Dinitrocyclopropanes. Synthesis, 2007, 2007, 2009-2013.	1.2	1
45	Timeâ€Dependent Diastereodivergent Michael Addition Enabled by Phosphazenes Acting as Catalysts and Reactants. Advanced Synthesis and Catalysis, 2021, 363, 5106-5115.	2.1	1
46	Three-Component Reactions of Polynitromethanes with Alkynes. The First Synthesis of gem-Dinitroaziridines ChemInform, 2005, 36, no.	0.1	0
47	Ring Opening of Donor-Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N-Heterocycles. Chemistry - A European Journal, 2015, 21, 4861-4861.	1.7	0
48	A Straightforward Approach to Tetrahydroindolo[3,2-b]carbazoles and 1-Indolyltetrahydrocarbazoles through [3+3] Cyclodimerization of Indole-Derived Cyclopropanes.	1.7	0

Chemistry - A European Journal, 2016, 22, 1185-1185.