
Min-Ook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752094/publications.pdf Version: 2024-02-01

MIN-OOK KIM

#	Article	IF	CITATIONS
1	All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output power. Smart Materials and Structures, 2020, 29, 055026.	3.5	30
2	Polymer-based flexible and multi-directional tactile sensor with multiple NiCr piezoresistors. Micro and Nano Systems Letters, 2019, 7, .	3.7	26
3	Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 691-698.	4.9	45
4	Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability. Nanotechnology, 2019, 30, 275401.	2.6	21
5	Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor. Smart Materials and Structures, 2018, 27, 035001.	3.5	55
6	Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays. Nanotechnology, 2018, 29, 055501.	2.6	17
7	Humidityâ€Resistant, Fabricâ€Based, Wearable Triboelectric Energy Harvester by Treatment of Hydrophobic Selfâ€Assembled Monolayers. Advanced Materials Technologies, 2018, 3, 1800048.	5.8	26
8	Flexible piezoelectric strain energy harvester responsive to multi-directional input forces and its application to self-powered motion sensor. , 2017, , .		5
9	Development of MEMS Multi-Mode Electrostatic Energy Harvester Based on the SOI Process. Micromachines, 2017, 8, 51.	2.9	18
10	Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction. Scientific Reports, 2015, 5, 18265.	3.3	8
11	Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). Chemistry of Materials, 2015, 27, 4749-4755.	6.7	111
12	Development and performance test of a ZnO nanowire charger for measurements of nano-aerosol particles. Sensors and Actuators A: Physical, 2015, 222, 1-7.	4.1	6
13	A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Materials and Structures, 2014, 23, 045040.	3.5	51
14	Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation. Applied Physics Letters, 2014, 104, .	3.3	33
15	Highly sensitive cantilever type chemo-mechanical hydrogen sensor based on contact resistance of self-adjusted carbon nanotube arrays. Sensors and Actuators B: Chemical, 2014, 197, 414-421.	7.8	5
16	Variable capacitor with switching mechanism for wide tuning range. , 2014, , .		0
17	Reversible and Continuous Latching Using a Carbon Internanotube Interface. ACS Applied Materials & Interfaces, 2013, 5, 7465-7469.	8.0	3
18	Lithography-free fabrication of single crystalline silicon tubular nanostructures on large area. Microelectronic Engineering, 2012, 98, 325-328.	2.4	2

Μιν-Οοκ Κιμ

#	Article	IF	CITATIONS
19	Facile fabrication of sub-20-nm nanochannels based on crystallinity-dependent anisotropic etching of silicon. Microelectronic Engineering, 2012, 98, 309-312.	2.4	2
20	Continuously latchable shuttle using carbon nanotubes on sidewall surfaces. , 2012, , .		0
21	Microswitch with self-assembled carbon nanotube arrays for high current density and reliable contact. , 2011, , .		4
22	Aligned Carbon Nanotube Arrays for Degradationâ€Resistant, Intimate Contact in Micromechanical Devices. Advanced Materials, 2011, 23, 2231-2236.	21.0	59