List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7752050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boron Nitride Nanotubes and Nanosheets. ACS Nano, 2010, 4, 2979-2993.	14.6	1,981
2	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications, 2013, 4, 2905.	12.8	606
3	Origin and control of high-temperature ferromagnetism in semiconductors. Nature Materials, 2007, 6, 440-446.	27.5	318
4	"Chemical Blowing―of Thinâ€Walled Bubbles: Highâ€Throughput Fabrication of Largeâ€Area, Fewâ€Layered and C <i>_x</i> â€BN Nanosheets. Advanced Materials, 2011, 23, 4072-4076.	BN 21.0	217
5	Demonstration of ultrahigh thermoelectric efficiency of â^1⁄47.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule, 2021, 5, 1196-1208.	24.0	205
6	Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy, 2017, 31, 152-159.	16.0	201
7	Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. Nano Letters, 2007, 7, 2146-2151.	9.1	192
8	Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. Journal of Physical Chemistry C, 2010, 114, 4340-4344.	3.1	188
9	Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes. Nano Letters, 2007, 7, 632-637.	9.1	183
10	Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Materials Letters, 2005, 59, 629-632.	2.6	180
11	Mechanical Properties of Si Nanowires as Revealed by in Situ Transmission Electron Microscopy and Molecular Dynamics Simulations. Nano Letters, 2012, 12, 1898-1904.	9.1	151
12	Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3perovskite and the light elements in the core. Geophysical Research Letters, 2005, 32, .	4.0	129
13	Intraparticle Magnetic Properties of Co3O4 Nanocrystals. Nano Letters, 2001, 1, 379-382.	9.1	122
14	Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2009, 113, 13605-13609.	3.1	115
15	Doping and Raman Characterization of Boron and Phosphorus Atoms in Germanium Nanowires. ACS Nano, 2010, 4, 3807-3816.	14.6	99
16	Unusual Freezing and Melting of Gallium Encapsulated in Carbon Nanotubes. Physical Review Letters, 2004, 93, 095504.	7.8	98
17	Copper-Filled Carbon Nanotubes: Rheostatlike Behavior and Femtogram Copper Mass Transport. Advanced Materials, 2007, 19, 1937-1942.	21.0	93
18	Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant. Scientific Reports, 2016, 6, 20548.	3.3	88

#	Article	IF	CITATIONS
19	Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope. Acta Materialia, 2007, 55, 1293-1298.	7.9	76
20	Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diamond and Related Materials, 2003, 12, 1269-1274.	3.9	70
21	On the structure and stability of small metal particles: high-resolution UHV electron microscope study. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1989, 12, 45-51.	1.0	69
22	Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. Materials and Design, 2015, 88, 451-460.	7.0	67
23	Characterization of Impurity Doping and Stress in Si/Ge and Ge/Si Core–Shell Nanowires. ACS Nano, 2012, 6, 8887-8895.	14.6	64
24	Size dependence of plasmon energy in Si clusters. Journal of Applied Physics, 1992, 72, 812-814.	2.5	63
25	Lithium ion battery anodes using Si-Fe based nanocomposite structures. Nano Energy, 2016, 26, 37-42.	16.0	62
26	High‥ield Synthesis of Rhombohedral Boron Nitride Triangular Nanoplates. Advanced Materials, 2007, 19, 2141-2144.	21.0	61
27	Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant. Microscopy (Oxford, England), 2016, 65, 451-459.	1.5	61
28	Atomic structures of iron-based single-crystalline nanowires crystallized inside multi-walled carbon nanotubes as revealed by analytical electron microscopy. Acta Materialia, 2006, 54, 2567-2576.	7.9	59
29	Stepwise Current-Driven Release of Attogram Quantities of Copper Iodide Encapsulated in Carbon Nanotubes. Nano Letters, 2008, 8, 3120-3125.	9.1	56
30	Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. Nanoscale, 2015, 7, 18992-18997.	5.6	56
31	A Novel Design Approach for Self-Crack-Healing Structural Ceramics with 3D Networks of Healing Activator. Scientific Reports, 2017, 7, 17853.	3.3	56
32	Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Applied Physics A: Materials Science and Processing, 2007, 88, 347-352.	2.3	47
33	Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophysical Research Letters, 2008, 35, .	4.0	46
34	Spectral properties of a novel antimony(iii)-phthalocyanine complex that behaves like J-aggregates in non-aqueous mediaElectronic supplementary information (ESI) available: Raman spectra of [Sb(tbpc)]+I3? for tablet. See http://www.rsc.org/suppdata/cc/b3/b304089e/. Chemical Communications,	4.1	45
35	Phases and crystallization of encapsulated cobalt nanorods inside BN nanotubes. Acta Materialia, 2004, 52, 601-606.	7.9	44
36	Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope. Advanced Materials, 2012, 24, 177-194.	21.0	43

#	Article	IF	CITATIONS
37	Segregation of core melts by permeable flow in the lower mantle. Earth and Planetary Science Letters, 2004, 224, 249-257.	4.4	42
38	Experimental study of reaction between perovskite and molten iron to 146ÂGPa and implications for chemically distinct buoyant layer at the top of the core. Physics and Chemistry of Minerals, 2009, 36, 355-363.	0.8	40
39	Revealing the Anomalous Tensile Properties of WS ₂ Nanotubes by in Situ Transmission Electron Microscopy. Nano Letters, 2013, 13, 1034-1040.	9.1	40
40	Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2551-2555.	2.7	39
41	Magnetic Behavior of Fe Doped In2O3. Japanese Journal of Applied Physics, 2005, 44, L979-L981.	1.5	36
42	Doping of Fe to In2O3. Thin Solid Films, 2006, 505, 122-125.	1.8	36
43	Solid–Solution Semiconductor Nanowires in Pseudobinary Systems. Nano Letters, 2013, 13, 85-90.	9.1	36
44	Dilution effect on magnetic properties of Co3O4 nanocrystals. Journal of Applied Physics, 2000, 88, 2771-2774.	2.5	34
45	Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM. Physica B: Condensed Matter, 2002, 323, 60-66.	2.7	34
46	Codoping of boron and phosphorus in silicon nanowires synthesized by laser ablation. Applied Physics Letters, 2008, 93, .	3.3	33
47	Bicrystalline ZnS Microbelts. Crystal Growth and Design, 2009, 9, 2790-2793.	3.0	33
48	Nanoscale Oxygen Generators:Â MgO2-Based Fillings of BN Nanotubes. Journal of Physical Chemistry B, 2003, 107, 8726-8729.	2.6	32
49	In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Applied Physics Letters, 2006, 88, 123101.	3.3	32
50	Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science, 2021, 374, 1616-1620.	12.6	32
51	Quantum-confinement effects on the optical and dielectric properties for mesocrystals of BaTiO3 and SrBi2Ta2O9. Journal of Applied Physics, 2000, 87, 474-478.	2.5	31
52	Correlation between resistivity and oxygen vacancy of hydrogen-doped indium tin oxide thin films. Thin Solid Films, 2011, 519, 3557-3561.	1.8	30
53	Boron nitride nanotubes as nanocrucibles for morphology and phase transformations in encapsulated nanowires of the Mg–O system. Acta Materialia, 2004, 52, 3295-3303.	7.9	29
54	An experimental study of charge distribution in crystalline and amorphous Si nanoclusters in thin silica films. Journal of Applied Physics, 2008, 103, .	2.5	29

#	Article	IF	CITATIONS
55	Nanocomposites: synthesis and elemental mapping of aligned B–C–N nanotubes. Chemical Physics Letters, 2002, 360, 1-7.	2.6	28
56	Photoluminescence properties of crystallized strontium aluminate thin films prepared by ion-beam evaporation. Thin Solid Films, 2002, 407, 136-138.	1.8	27
57	Properties and engineering of individual inorganic nanotubes in a transmission electron microscope. Journal of Materials Chemistry, 2009, 19, 909.	6.7	27
58	Self-assembled ZnS nanowire arrays: synthesis, <i>in situ</i> Cu doping and field emission. Nanotechnology, 2010, 21, 375601.	2.6	27
59	Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam. Nanotechnology, 2011, 22, 275202.	2.6	27
60	Improvement of resolution by convergent-beam illumination in surface profile images of high resolution transmission electron microscopy. Ultramicroscopy, 1990, 33, 255-260.	1.9	26
61	ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. Journal of Materials Science, 2008, 43, 1460-1470.	3.7	26
62	Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM. Nano Letters, 2016, 16, 6008-6013.	9.1	26
63	C to BN conversion in multi-walled nanotubes as revealed by energy-filtering transmission electron microscopy. Chemical Physics Letters, 2001, 346, 29-34.	2.6	25
64	Commensurate reconstruction on a (001) facet of a gold particle. Physical Review B, 1990, 42, 7238-7241.	3.2	24
65	Formation, Structure, and Structural Properties of a New Filamentary Tubular Form:Â Hollow Conical-Helix of Graphitic Boron Nitride. Journal of the American Chemical Society, 2003, 125, 8032-8038.	13.7	24
66	Nanotubes in a gradient electric field as revealed by STM TEM technique. Nano Research, 2008, 1, 166-175.	10.4	24
67	Quantitativeness of phase measurement by transport of intensity equation. Journal of Electron Microscopy, 2010, 59, 33-41.	0.9	24
68	Structures of radioactive Cs-bearing microparticles in non-spherical forms collected in Fukushima. Geochemical Journal, 2018, 52, 123-136.	1.0	22
69	Large, Negative Magnetoresistance in an Oleic Acid-Coated Fe ₃ O ₄ Nanocrystal Self-Assembled Film. ACS Applied Materials & Interfaces, 2013, 5, 11584-11589.	8.0	21
70	Self-healing by design: universal kinetic model of strength recovery in self-healing ceramics. Science and Technology of Advanced Materials, 2020, 21, 593-608.	6.1	21
71	The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa ₂ O ₄ nanorods. Nanotechnology, 2009, 20, 365705.	2.6	20
72	A Rhombic Dodecahedral Honeycomb Structure with Cation Vacancy Ordering in a γ-Ga ₂ O ₃ Crystal. Crystal Growth and Design, 2013, 13, 3577-3581.	3.0	20

#	Article	IF	CITATIONS
73	Anomalous surface structure of fine germanium particles. Ultramicroscopy, 1991, 39, 382-386.	1.9	19
74	Nanoanalysis by a high-resolution energy filtering transmission electron microscope. Microscopy Research and Technique, 2004, 63, 140-148.	2.2	19
75	Real-time observation of liquid Indium unusual behavior inside silica nanotubes. Chemical Physics Letters, 2005, 409, 75-80.	2.6	19
76	Hydrogenation effect on enhancement of photoluminescence of Er and Si nanocrystallites in Er-doped SiO2 synthesized by laser ablation. Applied Physics A: Materials Science and Processing, 2006, 84, 395-401.	2.3	19
77	Crystallography of Novel T-Shaped ZnS Nanostructures and Their Cathodoluminescence. Crystal Growth and Design, 2010, 10, 4143-4147.	3.0	19
78	Twoâ€probe electrical measurements in transmission electron microscopes—Behavioral control of tungsten microwires. Microscopy Research and Technique, 2009, 72, 93-100.	2.2	18
79	352 nm ultraviolet emission from high-quality crystalline AlN whiskers. Nanotechnology, 2010, 21, 075708.	2.6	18
80	Structure analysis of Ba[sub 2]In[sub 2]O[sub 5] and related compounds by electron microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2284.	1.6	17
81	Peculiarities of Fe?Ni alloy crystallization and stability inside C nanotubes as derived through electron microscopy. Acta Materialia, 2005, 53, 1583-1593.	7.9	17
82	Discrimination of B–C–N nanotubes through energy-filtering electron microscopy. Diamond and Related Materials, 2005, 14, 1857-1866.	3.9	17
83	Microstructure Effects on the Electrochemical Kinetics of Vanadium Pentoxide Thin-Film Cathodes. Journal of the Electrochemical Society, 2006, 153, A1372.	2.9	17
84	Effects of Hydrogen in Working Gas on Valence States of Oxygen in Sputter-Deposited Indium Tin Oxide Thin Films. ACS Applied Materials & Interfaces, 2010, 2, 663-668.	8.0	17
85	Structural analysis of the phase separation in magnetic semiconductor (Zn, Cr)Te. Physica B: Condensed Matter, 2012, 407, 2947-2949.	2.7	17
86	A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission. Nano Research, 2020, 13, 1620-1626.	10.4	17
87	A stable LaB ₆ nanoneedle field-emission point electron source. Nanoscale Advances, 2021, 3, 2787-2792.	4.6	17
88	Visualizing nanoscale heat pathways. Nano Energy, 2018, 52, 323-328.	16.0	16
89	In-situ observation of melting of fine lead particles by high-resolution electron microscopy. Surface Science, 1999, 442, L953-L958.	1.9	15
90	New 300 kV Energy-Filtering Field Emission Electron Microscope. Japanese Journal of Applied Physics, 2001, 40, L1193-L1196.	1.5	15

#	Article	IF	CITATIONS
91	Mnâ^'Si-Catalyzed Synthesis and Tip-End-Induced Room Temperature Ferromagnetism of SiC/SiO ₂ Coreâ^'Shell Heterostructures. Journal of Physical Chemistry C, 2008, 112, 18911-18915.	3.1	15
92	Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscope. Nanotechnology, 2011, 22, 485707.	2.6	15
93	The direct observation of the Ge(001) dimer structure by high resolution UHV transmission electron microscopy. Surface Science, 1991, 242, 69-72.	1.9	14
94	Transmission electron microscopy and electron diffraction study of the short-range ordering structure of α-LiFeO2. Acta Crystallographica Section B: Structural Science, 2004, 60, 698-704.	1.8	14
95	Electrical properties of CNx nanotubes probed in a transmission electron microscope. Applied Physics A: Materials Science and Processing, 2007, 90, 225-229.	2.3	14
96	Nanostructured polymeric yolk–shell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016, 4, 9850-9857.	10.3	14
97	Epitaxial growth of β-Ga2O3 nanocolumns on MgO substrate. Journal of Crystal Growth, 2006, 286, 240-246.	1.5	12
98	Phase Separation in La _{1-<i>x</i>} Sr _{<i>x</i>} MnO _{3+δ} Nanocrystals Studied by Electron Spin Resonance. Journal of the Physical Society of Japan, 2008, 77, 074715.	1.6	12
99	Crystallography and elasticity of individual GaN nanotubes. Nanotechnology, 2009, 20, 185705.	2.6	12
100	Composition and structure of Pd nanoclusters in SiOx thin film. Journal of Applied Physics, 2011, 109, 084329.	2.5	12
101	Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy. Nano Letters, 2015, 15, 4922-4927.	9.1	12
102	A controllable and efficient method for the fabrication of a single HfC nanowire field-emission point electron source aided by low keV FIB milling. Nanoscale, 2020, 12, 16770-16774.	5.6	12
103	Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. Applied Physics Letters, 2007, 91, 223108.	3.3	11
104	Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope. Journal of Applied Physics, 2009, 106, 034302.	2.5	11
105	Ultrathin specimen preparation by a low-energy Ar-ion milling method. Microscopy (Oxford, England), 2013, 62, 321-326.	1.5	11
106	In situ electrical measurements and manipulation of B/N-doped C nanotubes in a high-resolution transmission electron microscope. Journal of Electron Microscopy, 2003, 52, 111-117.	0.9	10
107	In situ growth of Indium nanocrystals on InP nanorods mediated by electron beam of transmission electron microscope. Chemical Physics Letters, 2005, 416, 321-326.	2.6	10
108	Optimum condition of convergent beam illumination for observation of local structure by high resolution transmission electron microscopy. Ultramicroscopy, 1996, 62, 123-131.	1.9	9

#	Article	IF	CITATIONS
109	Magnetic properties of Coll mesoclusters. Applied Physics Letters, 2000, 77, 1194-1196.	3.3	9
110	Facile nanocoating method: From B-doped to BN-coated one-dimensional nanostructures. Applied Physics Letters, 2004, 85, 106-108.	3.3	9
111	Structural and magnetic properties of hexagonal Cr1Te films grown on CdTe(001) by molecular beam epitaxy. Journal of Crystal Growth, 2015, 415, 31-35.	1.5	9
112	Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. Ultramicroscopy, 2018, 194, 108-116.	1.9	9
113	Transport of intensity equation method and its applications. Microscopy (Oxford, England), 2021, 70, 69-74.	1.5	9
114	Highâ€resolution electron microscope observation of â€~ã€~atomic bridge'' formation between two interacting gold particles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 153-154.	2.1	8
115	The formation of Er-oxide nanoclusters in SiO2 thin films with excess Si. Journal of Applied Physics, 2009, 106, 014305.	2.5	8
116	Magnetic and Magnetoelectric Properties of Self-Assembled Fe _{2.5} Mn _{0.5} O ₄ Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 3589-3593.	8.0	8
117	Transmission electron microscope as an ultimate tool for nanomaterial property studies. Microscopy (Oxford, England), 2013, 62, 157-175.	1.5	8
118	Intrinsic and Defect-Related Elastic Moduli of Boron Nitride Nanotubes As Revealed by <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2019, 19, 4974-4980.	9.1	8
119	Microporous materials formed via intercalation of ultrathin coordination polymers in a layered silicate. Nano Energy, 2019, 59, 162-168.	16.0	8
120	Dilution effects on optical absorption and core-level photoelectron spectra of BaTiO3 mesocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 1999, 5, 161-166.	2.7	7
121	Magnetic Cluster Behavior of α-LiFeO2Related to the Cation Arrangements. Japanese Journal of Applied Physics, 2004, 43, L1232-L1235.	1.5	7
122	Growth of β-Ga2O3 nanocolumns crossing perpendicularly each other on MgO (100) surface. Journal of Alloys and Compounds, 2005, 390, 261-264.	5.5	7
123	Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4Nanoparticles. Japanese Journal of Applied Physics, 2007, 46, L823-L825.	1.5	7
124	Response to "Comment on â€~Quantum-confinement effects on the optical and dielectric properties for mesocrystals of BaTiO3 and SrBi2Ta2O9' ―[J. Appl. Phys. 88, 6092 (2000)]. Journal of Applied Physics, 2000, 88, 6093-6095.	2.5	6
125	Large frequency dependence of lowered maximum dielectric constant temperature of LiTaO3 nanocrystals dispersed in mesoporous silicate. Applied Physics Letters, 2003, 82, 4134-4136.	3.3	6
126	Size control and dielectric isolation of FePt nanoparticles using the MCM-41 molecular sieve. Materials Letters, 2008, 62, 3682-3684.	2.6	6

#	Article	IF	CITATIONS
127	Magnetoresistance of Drop-Cast Film of Cobalt-Substituted Magnetite Nanocrystals. ACS Applied Materials & Interfaces, 2014, 6, 17410-17415.	8.0	6
128	Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by <i>in situ</i> TEM. Nanotechnology, 2015, 26, 465705.	2.6	6
129	In situ cyclic telescoping of multi-walled carbon nanotubes in a transmission electron microscope. Carbon, 2016, 107, 225-232.	10.3	6
130	A Quantitative Study of Precipitation of Metastable Phases in an Al-1.94 at%Cu Alloy during Isothermal Aging at 373 K. Materials Transactions, 2006, 47, 3001-3006.	1.2	5
131	Synthesis of silicon nanocrystals in aluminum-doped SiO2 film by laser ablation method. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 31-35.	2.7	5
132	Characterization of amorphous and crystalline silicon nanoclusters in ultra thin silica layers. Journal of Applied Physics, 2008, 104, 094315.	2.5	5
133	Site-selective formation of Si nanocrystal in SiO2 by femtosecond laser irradiation and Al deoxidization effects. Applied Physics Letters, 2008, 92, 153112.	3.3	5
134	Formation of Cr-rich Nano-clusters and Columns in (Zn,Cr)Te Grown by MBE. Materials Research Society Symposia Proceedings, 2009, 1183, 13.	0.1	5
135	Morphology and crystallographic phase of V–C particles formed in Fe–Cr–Ni–V–C alloys. Materials Science and Technology, 2013, 29, 672-678.	1.6	4
136	Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by <i>in situ</i> transmission electron microscopy. Nanoscale Advances, 2019, 1, 1784-1790.	4.6	4
137	Effect of nitrogen acceptor co-doping on the structural and magnetic properties of (Zn, Fe) Te. Journal of Crystal Growth, 2019, 511, 42-47.	1.5	4
138	Contrast transfer function under convergent beam illumination measured by field emission gun. Journal of Electron Microscopy, 1999, 48, 27-32.	0.9	3
139	Formation of Si nanocrystallites observed by in situ transmission electron microscopy and their effect on the enhancement of Er photoluminescence in Er-doped SiO2. Journal of Applied Physics, 2007, 102, 114309.	2.5	3
140	Magnetoresistance and Microstructure of Magnetite Nanocrystals Dispersed in Indiumâ^'Tin Oxide Thin Films. ACS Applied Materials & Interfaces, 2009, 1, 1893-1898.	8.0	3
141	Origin of Coproduced Boron Nitride and Carbon Helical Conical Fibers. Crystal Growth and Design, 2011, 11, 3141-3148.	3.0	3
142	Tunable Mechanical and Electrical Properties of Coaxial BN Nanotubes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800576.	2.4	3
143	SURFACE TRANSMISSION ELECTRON MICROSCOPY ON STRUCTURES WITH TRUNCATION. Surface Review and Letters, 1997, 04, 687-694.	1.1	2
144	Temperature dependency of radiation damage in inorganic materials by 300 keV electrons. Microscopy (Oxford, England), 2001, 50, 245-249.	1.5	2

#	Article	IF	CITATIONS
145	Synthesis of mesoscopic barium titanate single crystals incorporating a cuboid-shaped hollow core. Journal of Crystal Growth, 2005, 275, e2377-e2381.	1.5	2
146	β-Ga2O3 nanorods crossing perpendicularly each other on MgO (100) substrate. Journal of Materials Science, 2005, 40, 4145-4147.	3.7	2
147	Boron Nitride Nanotubes: Recent Breakthroughs and Challenges. ECS Transactions, 2007, 11, 15-21.	0.5	2
148	Effects of hydrogen in working gas for sputter-deposition on surface morphology and microstructure of indium tin oxide thin films grown at room temperature. Materials Letters, 2009, 63, 2365-2368.	2.6	2
149	Element discrimination in a hexagonal boron nitride nanosheet by aberration corrected transmission electron microscopy. Ultramicroscopy, 2012, 122, 6-11.	1.9	2
150	Development of Nanoscale Thermocouple Probes for Local Thermal Measurements. E-Journal of Surface Science and Nanotechnology, 2019, 17, 102-107.	0.4	2
151	Correlation between Cr Distribution and Ferromagnetism in Iodine-Doped (Zn,Cr)Te. Journal of the Korean Physical Society, 2008, 53, 2917-2920.	0.7	2
152	Synthesis and magnetic properties of Fe-doped (In1â^'Ho)2O3 solid solution. Scripta Materialia, 2008, 59, 444-447.	5.2	1
153	In-situ TEM electrical and mechanical properties measurements of one-dimensional inorganic nanomaterials. , 2008, , .		1
154	Fluorescence XAFS analysis of local structures in iodine-doped Zn1-xCrxTe. Journal of Physics: Conference Series, 2009, 190, 012103.	0.4	1
155	Inhomogeneous Cr distribution and superparamagnetic behavior in magnetic semiconductor (Zn,) Tj ETQq1 1 0.	784314 rş	gBT ₁ /Overlock
156	Structural analysis of Cr aggregation in ferromagnetic semiconductor (Zn,Cr)Te. , 2013, , .		1
157	The Metastable Phase Responsible for Hardenig in an Al-Mg Alloy Aged at 473K. Advanced Materials Research, 2013, 748, 123-127.	0.3	1
158	Synthesis and magnetic properties of fergusonite-structured La(NbVMn)O ₄ . Emerging Materials Research, 2013, 2, 191-197.	0.7	1
159	Development of thermoelectric thin films and characterization methods. Journal of Physics: Conference Series, 2019, 1407, 012055.	0.4	1
160	Electrical conduction and field emission of a single-crystalline GdB ₄₄ Si ₂ nanowire. Nanoscale, 2020, 12, 18263-18268.	5.6	1
161	In Situ TEM Electrical and Mechanical Probing of Individual Multi-walled Boron Nitride Nanotubes. Topics in Applied Physics, 2010, , 275-286.	0.8	1
162	High-resolution Observation of SrTiO3Interface by Convergent Beam Illumination. Japanese Journal of Applied Physics, 1999, 38, 6138-6141.	1.5	0

#	Article	IF	CITATIONS
163	Shifts of Core-level Electron Binding Energies for SrBi2Ta2O9Nano-particles. Chemistry Letters, 2000, 29, 748-749.	1.3	0
164	X-Ray Photoelectron Spectroscopy of BaTiO3 Mesocrystals Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2000, 2000, 233-236.	0.1	0
165	Domain Boundaries in Ce-α-SiAlON as Revealed by HRTEM. Key Engineering Materials, 2003, 253, 89-102.	0.4	0
166	Frequency-dependent bifurcation point between field-cooled and zero-field-cooled dielectric constant of LiTaO3 nanoparticles embedded in amorphous SiO2. Applied Physics Letters, 2004, 84, 3385-3387.	3.3	0
167	Dilution Effects on Chemical and Magnetic Clusters of α-LiFeO2. Japanese Journal of Applied Physics, 2004, 43, L1620-L1622.	1.5	Ο
168	Visibility of Si nanoparticles embedded in an amorphous SiO2 matrix. Journal of Electron Microscopy, 2006, 55, 201-207.	0.9	0
169	A Quantitative Study of Precipitation of Metastable Phases in an Al-1.94 at%Cu Alloy during Isothermal Aging at 373 K. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 407-412.	0.4	0
170	Oxygen annealing for deuteriumâ€doped indium tin oxide thin films. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 829-833.	1.8	0
171	In situ TEM measurements of nanotube and nanosheet properties. Microscopy and Microanalysis, 2012, 18, 1542-1543.	0.4	0
172	Effects of (Ho _{<i>x</i>} In _{1â^'<i>x</i>}) _{1.9} Sn _{0.1} O ₃ matrix on magnetization of dispersed Fe ₃ O ₄ nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2570-2573.	1.8	0
173	Magnetoresistance at Room Temperature of Oleic Acid Coated Fe _{3-<i>x</i>} Co _{<i>x</i>} O _{4(<i>x</i> = 0, 0.1 and 0.3) Nanocrystal Drop-Cast Films. Transactions of the Materials Research Society of Japan, 2015, 40, 55-58.}	> 0.2	0
174	Growth and doping control of Ge/Si and Si/Ge core-shell nanowires. , 2016, , .		0
175	Transmission Electron Microscope. , 2018, , 775-781.		Ο
176	Field Effect of a Chemically Assembled Fe ₃ O ₄ Nanocrystal Film Singleâ€Electron Transistor. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700608.	1.8	0
177	Kinking effects and transport properties of coaxial BN-C nanotubes as revealed by in situ transmission electron microscopy and theoretical analysis. APL Materials, 2019, 7, 101118.	5.1	Ο
178	Synthesis, Analysis, Transport and Field emission Measurements of Compound B-C-N Nanotubes. Materials Research Society Symposia Proceedings, 2003, 772, 761.	0.1	0
179	Magnetic Properties of La1-xSrxMnO3 Nanocrystals Embedded in A Mesoporous Silicate. Materials Research Society Symposia Proceedings, 2003, 776, 11141.	0.1	0
180	High-resolution electron microscopy of fine particles. Microscopy Microanalysis Microstructures, 1993, 4, 297-304.	0.4	0

0

#	Article	IF	CITATIONS
181	Structure and composition analysis of nanotubes and ceramics by a new 300 kV energy-filtered FEGTEM. , 2018, , 83-90.		0

A new omega filter electron microscope at 300 kV. , 2018, , 41-44.