
Pierre-Alexis Mouthuy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7751888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
2	Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells, 2019, 8, 793.	4.1	192
3	Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials, 2016, 109, 55-68.	11.4	158
4	A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair. Acta Biomaterialia, 2015, 26, 124-135.	8.3	60
5	Fabrication of continuous electrospun filaments with potential for use as medical fibres. Biofabrication, 2015, 7, 025006.	7.1	55
6	Performances of a portable electrospinning apparatus. Biotechnology Letters, 2015, 37, 1107-1116.	2.2	48
7	Polydioxanone implants: A systematic review on safety and performance in patients. Journal of Biomaterials Applications, 2020, 34, 902-916.	2.4	48
8	Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 67, 127-134.	3.1	32
9	Synthetic sutures: Clinical evaluation and future developments. Journal of Biomaterials Applications, 2017, 32, 410-421.	2.4	26
10	Direct electrospinning of poly(vinyl butyral) onto human dermal fibroblasts using a portable device. Biotechnology Letters, 2018, 40, 737-744.	2.2	26
11	Investigating the use of curcumin-loaded electrospun filaments for soft tissue repair applications. International Journal of Nanomedicine, 2017, Volume 12, 3977-3991.	6.7	24
12	Histopathological and immunohistochemical evaluation of cellular response to a woven and electrospun polydioxanone (PDO) and polycaprolactone (PCL) patch for tendon repair. Scientific Reports, 2020, 10, 4754.	3.3	23
13	Using an industrial braiding machine to upscale the production and modulate the design of electrospun medical yarns. Polymer Testing, 2018, 69, 188-198.	4.8	12
14	Growing tissue grafts on humanoid robots: A future strategy in regenerative medicine?. Science Robotics, 2017, 2, .	17.6	9
15	Pyridine as an additive to improve the deposition of continuous electrospun filaments. PLoS ONE, 2019, 14, e0214419.	2.5	9
16	Histological evaluation of cellular response to a multifilament electrospun suture for tendon repair. PLoS ONE, 2020, 15, e0234982.	2.5	8
17	Humanoid robots to mechanically stress human cells grown in soft bioreactors. , 2022, 1, .		8
18	In vitro evaluation of the response of human tendonâ€derived stromal cells to a novel electrospun suture for tendon renair. Translational Sports Medicine, 2021, 4, 409-418	1.1	6

#	Article	IF	CITATIONS
19	Early development of a polycaprolactone electrospun augment for anterior cruciate ligament reconstruction. Materials Science and Engineering C, 2021, 129, 112414.	7.3	5
20	74â€Polydioxanone Electrospun Filaments To Mimic Tendon Hierarchical Architecture. British Journal of Sports Medicine, 2014, 48, A48-A48.	6.7	4
21	Multifilament electrospun scaffolds for soft tissue reconstruction. , 2018, , 295-328.		2
22	Biomaterials: Electrospinning. , 2019, , 424-441.		2