Luis FabiÃ;n Fuentes-Cortés

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7751428/publications.pdf Version: 2024-02-01

33 papers	481 citations	623734 14 h-index	713466 21 g-index
33 all docs	33 docs citations	33 times ranked	386 citing authors

#	Article	IF	CITATIONS
1	Optimal design of integrated CHP systems for housing complexes. Energy Conversion and Management, 2015, 99, 252-263.	9.2	55
2	Integrated design and control of multigeneration systems for building complexes. Energy, 2016, 116, 1403-1416.	8.8	31
3	Valuation of water and emissions in energy systems. Applied Energy, 2018, 210, 518-528.	10.1	28
4	Optimal design of residential cogeneration systems under uncertainty. Computers and Chemical Engineering, 2016, 88, 86-102.	3.8	27
5	Integration of distributed generation technologies on sustainable buildings. Applied Energy, 2018, 224, 582-601.	10.1	25
6	Assessment of the water–energy–carbon nexus in energy systems: A multi-objective approach. Applied Energy, 2022, 305, 117872.	10.1	24
7	Economic and environmental optimization for a biogas supply Chain: A CVaR approach applied to uncertainty of biomass and biogas demand. Computers and Chemical Engineering, 2020, 141, 107018.	3.8	23
8	Optimal design of the water-energy-food nexus for rural communities. Computers and Chemical Engineering, 2020, 143, 107120.	3.8	23
9	Optimal design of energy and water supply systems for low-income communities involving multiple-objectives. Energy Conversion and Management, 2017, 151, 43-52.	9.2	22
10	Optimal design of CHP systems for housing complexes involving weather and electric market variations. Applied Thermal Engineering, 2015, 90, 895-906.	6.0	21
11	Scalable modeling and solution of stochastic multiobjective optimization problems. Computers and Chemical Engineering, 2017, 99, 185-197.	3.8	19
12	Balancing stakeholder priorities in the operation of combined heat and power systems. Applied Thermal Engineering, 2018, 128, 480-488.	6.0	19
13	Optimal Design of Inherently Safer Domestic Combined Heat and Power Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 188-201.	6.7	16
14	Analysis of Carbon Policies in the Optimal Design of Domestic Cogeneration Systems Involving Biogas Consumption. ACS Sustainable Chemistry and Engineering, 2017, 5, 4429-4442.	6.7	14
15	Defining priorities in the design of power and water distribution networks. Energy, 2017, 137, 1026-1040.	8.8	14
16	Integrated utility pricing and design of water-energy rural off-grid systems. Energy, 2019, 177, 511-529.	8.8	13
17	Multi-scenario model for optimal design of seawater air-conditioning systems under demand uncertainty. Journal of Cleaner Production, 2019, 238, 117863.	9.3	12
18	Machine Learning Algorithms Used in PSE Environments: A Didactic Approach and Critical Perspective. Industrial & Engineering Chemistry Research, 2022, 61, 8932-8962.	3.7	12

#	Article	IF	CITATIONS
19	Perspectives for Implementing Distributed Generation in Developing Countries through Modeling Techniques. ACS Sustainable Chemistry and Engineering, 2018, 6, 1022-1038.	6.7	10
20	A Multistakeholder Approach for the Optimal Planning of Sustainable Energy Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 9451-9460.	6.7	10
21	Water–Energy Off-Grid Systems Design Using a Dominant Stakeholder Approach. ACS Sustainable Chemistry and Engineering, 2019, 7, 8554-8578.	6.7	10
22	Optimal sustainable water-Energy storage strategies for off-grid systems in low-income communities. Computers and Chemical Engineering, 2019, 123, 87-109.	3.8	10
23	Optimal design of the ocean thermal energy conversion systems involving weather and energy demand variations. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108114.	3.6	9
24	<i>110th Anniversary</i> : Modeling National Power Flow Systems through the Energy Hub Approach. Industrial & Engineering Chemistry Research, 2019, 58, 14252-14266.	3.7	7
25	Involving Environmental Assessment in the Optimal Design of Domestic Cogeneration Systems. Process Integration and Optimization for Sustainability, 2017, 1, 15-32.	2.6	5
26	Implementing Data Reduction Strategies for the Optimal Design of Renewable Energy Systems. Process Integration and Optimization for Sustainability, 2022, 6, 17-36.	2.6	5
27	A multi-objective assessment for the water-energy-food nexus for rural distributed energy systems. Sustainable Energy Technologies and Assessments, 2022, 51, 101956.	2.7	5
28	Conditions accommodating a dominant stakeholder in the design of renewable air conditioning systems for tourism complexes. Energy, 2019, 172, 808-822.	8.8	4
29	Carbon Price Evaluation in Power Systems for Flaring Mitigation. Journal of Sustainable Development of Energy, Water and Environment Systems, 2019, 7, 716-729.	1.9	4
30	Optimal configuration of metallic nanoparticles to maximize heat transfer in a 2D square plate. IFAC-PapersOnLine, 2019, 52, 207-211.	0.9	2
31	Optimal Coupling of Demand Patterns for Improving the Performance of CHP Systems. Computer Aided Chemical Engineering, 2017, , 1909-1914.	0.5	1
32	A MINLP approach to improve heat transfer in flat plates through the optimal distribution of nanoparticles. Computers and Chemical Engineering, 2021, 152, 107389.	3.8	1
33	Synthesis of Water Distribution Networks through a Multi-Stakeholder Approach. Computer Aided Chemical Engineering, 2018, 44, 1717-1722.	0.5	0