
Daxian Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7751387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfideâ€Based Solidâ€State Electrolytes: Synthesis, Stability, and Potential for Allâ€Solidâ€State Batteries. Advanced Materials, 2019, 31, e1901131.	11.1	365
2	Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3, 57-94.	5.0	334
3	3D Printed Highâ€Performance Lithium Metal Microbatteries Enabled by Nanocellulose. Advanced Materials, 2019, 31, e1807313.	11.1	226
4	Metallic MoS ₂ for High Performance Energy Storage and Energy Conversion. Small, 2018, 14, e1800640.	5.2	218
5	Bacterial-Derived, Compressible, and Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano Letters, 2018, 18, 7407-7413.	4.5	192
6	Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. Advanced Materials, 2018, 30, e1802156.	11.1	115
7	Stable Thiophosphate-Based All-Solid-State Lithium Batteries through Conformally Interfacial Nanocoating. Nano Letters, 2020, 20, 1483-1490.	4.5	112
8	Honeycomb-like carbon nanoflakes as a host for SnO ₂ nanoparticles allowing enhanced lithium storage performance. Journal of Materials Chemistry A, 2017, 5, 6817-6824.	5.2	101
9	Photocatalytic Rejuvenation Enabled Self-Sanitizing, Reusable, and Biodegradable Masks against COVID-19. ACS Nano, 2021, 15, 11992-12005.	7.3	98
10	Solidâ€State Batteries: Sulfideâ€Based Solidâ€State Electrolytes: Synthesis, Stability, and Potential for Allâ€Solidâ€State Batteries (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970311.	11.1	75
11	Synthesis of SnO ₂ versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale, 2016, 8, 7595-7603.	2.8	69
12	Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond. ACS Energy Letters, 2020, 5, 3468-3489.	8.8	68
13	Long ycling Sulfideâ€Based Allâ€Solidâ€State Batteries Enabled by Electrochemoâ€Mechanically Stable Electrodes. Advanced Materials, 2022, 34, e2200401.	11.1	62
14	Additive Manufacturing of 3D Aerogels and Porous Scaffolds: A Review. Advanced Functional Materials, 2021, 31, 2103410.	7.8	61
15	Synthesis of NiS/carbon composites as anodes for high-performance sodium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 3047-3055.	1.2	55
16	Stable Li Metal Anode Enabled by Space Confinement and Uniform Curvature through Lithiophilic Nanotube Arrays. Advanced Energy Materials, 2020, 10, 1902819.	10.2	55
17	Nanocarved MoS ₂ –MoO ₂ Hybrids Fabricated Using <i>in Situ</i> Grown MoS ₂ as Nanomasks. ACS Nano, 2016, 10, 9509-9515.	7.3	52
18	Amphipathic Binder Integrating Ultrathin and Highly Ionâ€Conductive Sulfide Membrane for Cellâ€Level Highâ€Energyâ€Density Allâ€Solidâ€State Batteries. Advanced Materials, 2021, 33, e2105505.	11.1	52

Daxian Cao

#	Article	IF	CITATIONS
19	Mass Transfer and Reaction Kinetic Enhanced Electrode for Highâ€Performance Aqueous Flow Batteries. Advanced Functional Materials, 2019, 29, 1903192.	7.8	50
20	Epitaxial Growth of Urchin‣ike CoSe ₂ Nanorods from Electrospun Coâ€Embedded Porous Carbon Nanofibers and Their Superior Lithium Storage Properties. Particle and Particle Systems Characterization, 2017, 34, 1700185.	1.2	49
21	Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries. Energy Storage Materials, 2022, 48, 458-465.	9.5	46
22	Plasmonicâ€Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals. Advanced Optical Materials, 2019, 7, 1801816.	3.6	44
23	Versatile zero―to threeâ€dimensional carbon for electrochemical energy storage. , 2021, 3, 895-915.		41
24	A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties. Nano Letters, 2017, 17, 3376-3382.	4.5	39
25	Ligninâ€Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression. Small Methods, 2019, 3, 1800539.	4.6	39
26	Stable and Highly Ion-Selective Membrane Made from Cellulose Nanocrystals for Aqueous Redox Flow Batteries. Nano Letters, 2019, 19, 8979-8989.	4.5	38
27	Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH. Energy Storage Materials, 2021, 41, 505-514.	9.5	36
28	High Phase Change Enthalpy Enabled by Nanocellulose Enhanced Shape Stable Boron Nitride Aerogel. ACS Applied Polymer Materials, 2020, 2, 3001-3009.	2.0	31
29	Stable lithium–sulfur full cells enabled by dual functional and interconnected mesocarbon arrays. Journal of Materials Chemistry A, 2019, 7, 3289-3297.	5.2	29
30	Dualâ€Function, Tunable, Nitrogenâ€Doped Carbon for Highâ€Performance Li Metal–Sulfur Full Cell. Small, 2019, 15, e1804609.	5.2	28
31	Operando EDXRD Study of Allâ€Solidâ€State Lithium Batteries Coupling Thioantimonate Superionic Conductors with Metal Sulfide. Advanced Energy Materials, 2021, 11, 2002861.	10.2	25
32	Pyrolytic synthesis of MoO3 nanoplates within foam-like carbon nanoflakes for enhanced lithium ion storage. Journal of Colloid and Interface Science, 2018, 514, 686-693.	5.0	24
33	Binding SnO2 nanoparticles onto carbon nanotubes with assistance of amorphous MoO3 towards enhanced lithium storage performance. Journal of Colloid and Interface Science, 2017, 504, 230-237.	5.0	22
34	Compressible Ionized Natural 3D Interconnected Loofah Membrane for Salinity Gradient Power Generation. Small, 2022, 18, e2104320.	5.2	22
35	Ice-Templated Anisotropic Flame-Resistant Boron Nitride Aerogels Enhanced through Surface Modification and Cellulose Nanofibrils. ACS Applied Polymer Materials, 2021, 3, 1358-1367.	2.0	20
36	Functionalized Well-Aligned Channels Derived from Wood as a Convection-Enhanced Electrode for Aqueous Flow Batteries. ACS Applied Energy Materials, 2020, 3, 6249-6257.	2.5	19

DAXIAN CAO

#	Article	IF	CITATIONS
37	Abundant Organic Dye as an Anolyte for Aqueous Flow Battery with Multielectron Transfer. ACS Applied Energy Materials, 2019, 2, 7425-7437.	2.5	18
38	Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries. Condensed Matter, 2019, 4, 53.	0.8	18
39	High Surface Area Nâ€Doped Carbon Fibers with Accessible Reaction Sites for Allâ€Solidâ€State Lithiumâ€Sulfur Batteries. Small, 2022, 18, e2105678.	5.2	16
40	Largeâ€6cale Manufacturing of Patternâ€Integrated Paper Liâ€Ion Microbatteries through Rollâ€toâ€Roll Flexographic Printing. Advanced Materials Technologies, 2022, 7, .	3.0	9
41	Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	8
42	Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 8704-8714.	3.2	7
43	A Modeling Approach for Optimization of Printed NMC622 Cathode for Capacity Density Improvement under Fast Charging Condition- 3D Simulation and Experimental Validation. , 2022, , .		3
44	Aqueous Flow Batteries: Mass Transfer and Reaction Kinetic Enhanced Electrode for Highâ€Performance Aqueous Flow Batteries (Adv. Funct. Mater. 43/2019). Advanced Functional Materials, 2019, 29, 1970297.	7.8	0