Jiangwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7751125/publications.pdf

Version: 2024-02-01

94 papers

8,019 citations

39 h-index 88 g-index

96 all docs 96
docs citations

96 times ranked 9447 citing authors

#	Article	IF	CITATIONS
1	Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation. Nano Letters, 2011, 11, 3312-3318.	9.1	691
2	Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nature Communications, 2015, 6, 10143.	12.8	608
3	In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnology, 2012, 7, 749-756.	31.5	533
4	Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction. Nano Letters, 2012, 12, 5897-5902.	9.1	491
5	Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes. Nano Letters, 2011, 11, 2251-2258.	9.1	379
6	Two-Phase Electrochemical Lithiation in Amorphous Silicon. Nano Letters, 2013, 13, 709-715.	9.1	377
7	Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature, 2014, 512, 177-180.	27.8	365
8	Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy and Environmental Science, 2018, 11, 669-681.	30.8	329
9	Tailoring Pore Size of Nitrogenâ€Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1401752.	19.5	273
10	In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers. Nano Letters, 2014, 14, 3445-3452.	9.1	263
11	In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nature Materials, 2015, 14, 594-600.	27.5	250
12	Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nature Communications, 2013, 4, 1742.	12.8	226
13	High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 19237-19244.	10.3	195
14	Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nature Communications, 2021, 12, 2167.	12.8	153
15	Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 12652-12657.	3.1	150
16	Lithiation-Induced Embrittlement of Multiwalled Carbon Nanotubes. ACS Nano, 2011, 5, 7245-7253.	14.6	122
17	Lithium–tellurium batteries based on tellurium/porous carbon composite. Journal of Materials Chemistry A, 2014, 2, 12201-12207.	10.3	121
18	Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers. Nano Letters, 2016, 16, 105-113.	9.1	120

#	Article	IF	Citations
19	Growth of environmentally stable transition metal selenide films. Nature Materials, 2019, 18, 602-607.	27.5	116
20	In situ atomistic observation of disconnection-mediated grain boundary migration. Nature Communications, 2019, 10, 156.	12.8	98
21	Structural Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling. Journal of the Electrochemical Society, 2014, 161, F3019-F3024.	2.9	96
22	High damage tolerance of electrochemically lithiated silicon. Nature Communications, 2015, 6, 8417.	12.8	96
23	Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Applied Catalysis B: Environmental, 2021, 282, 119551.	20.2	93
24	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1703-1707.	5.1	90
25	Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure. Corrosion Science, 2013, 74, 59-70.	6.6	78
26	Sandwich-Lithiation and Longitudinal Crack in Amorphous Silicon Coated on Carbon Nanofibers. ACS Nano, 2012, 6, 9158-9167.	14.6	72
27	Atomic-scale mechanism of the Î″ → Î′ phase transformation in Al-Cu alloys. Journal of Materials Science and Technology, 2017, 33, 1159-1164.	10.7	63
28	A Nonflammable Electrolyte Enabled High Performance K _{0.5} MnO ₂ Cathode for Low-Cost Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 1916-1922.	17.4	61
29	Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today, 2020, 35, 100987.	11.9	55
30	Dualâ€Additive Assisted Chemical Vapor Deposition for the Growth of Mnâ€Doped 2D MoS ₂ with Tunable Electronic Properties. Small, 2020, 16, e1903181.	10.0	54
31	Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nature Communications, 2020, 11, 3100.	12.8	53
32	Anti-twinning in nanoscale tungsten. Science Advances, 2020, 6, eaay2792.	10.3	49
33	Defect-driven selective metal oxidation at atomic scale. Nature Communications, 2021, 12, 558.	12.8	47
34	Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires. Science Advances, 2018, 4, eaas8850.	10.3	46
35	Revealing extreme twin-boundary shear deformability in metallic nanocrystals. Science Advances, 2021, 7, eabe4758.	10.3	46
36	Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating. Nano Letters, $2016, 16, 5815-5822$.	9.1	45

#	Article	IF	CITATIONS
37	Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Materials, 2018, 14, 279-288.	18.0	45
38	Local lattice distortion mediated formation of stacking faults in Mg alloys. Acta Materialia, 2019, 170, 231-239.	7.9	45
39	Strong Hall–Petch Type Behavior in the Elastic Strain Limit of Nanotwinned Gold Nanowires. Nano Letters, 2015, 15, 3865-3870.	9.1	41
40	Unstable twin in body-centered cubic tungsten nanocrystals. Nature Communications, 2020, 11, 2497.	12.8	40
41	High performance potassium–sulfur batteries and their reaction mechanism. Journal of Materials Chemistry A, 2020, 8, 10875-10884.	10.3	40
42	Enhancing the Strength of Graphene by a Denser Grain Boundary. ACS Nano, 2018, 12, 4529-4535.	14.6	39
43	Hydrothermal synthesis and formation mechanism of the single-crystalline Bi ₄ Ti ₃ O ₁₂ nanosheets with dominant (010) facets. CrystEngComm, 2016, 18, 2268-2274.	2.6	38
44	Design principle of all-inorganic halide perovskite-related nanocrystals. Journal of Materials Chemistry C, 2018, 6, 12484-12492.	5.5	38
45	Formation of mixed metal sulfides of NixCu1â^'xCo2S4 for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2019, 836, 134-142.	3.8	35
46	Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nature Communications, 2021, 12, 913.	12.8	34
47	Hierarchical twinning governed by defective twin boundary in metallic materials. Science Advances, 2022, 8, .	10.3	33
48	Hydrothermal synthesis of flower-like LiMnPO4nanostructures self-assembled with (010) nanosheets and their application in Li-ion batteries. CrystEngComm, 2015, 17, 6399-6405.	2.6	30
49	Olivine LiFePO4 nanocrystallites embedded in carbon-coating matrix for high power Li-ion batteries. Electrochimica Acta, 2016, 222, 685-692.	5.2	30
50	Atomistic perspective on in situ nanomechanics. Extreme Mechanics Letters, 2016, 8, 127-139.	4.1	29
51	Bending-induced deformation twinning in body-centered cubic tungsten nanowires. Materials Research Letters, 2019, 7, 210-216.	8.7	29
52	Void-assisted plasticity in Ag nanowires with a single twin structure. Nanoscale, 2014, 6, 9574.	5.6	28
53	Size-dependent dislocation–twin interactions. Nanoscale, 2019, 11, 12672-12679.	5.6	28
54	Highly-efficient MnO2/carbon array-type catalytic cathode enabling confined Li2O2 growth for long-life Li–O2 batteries. Energy Storage Materials, 2017, 6, 164-170.	18.0	27

#	Article	IF	Citations
55	Nanoscale Deformation Analysis With High-Resolution Transmission Electron Microscopy and Digital Image Correlation. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	26
56	Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 2020, 379, 122418.	12.7	23
57	Metal–Organic Framework@Polyacrylonitrile-Derived Potassiophilic Nanoporous Carbon Nanofiber Paper Enables Stable Potassium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6245-6252.	5.1	23
58	Twinning-assisted dynamic adjustment of grain boundary mobility. Nature Communications, 2021, 12, 6695.	12.8	23
59	Improved Na-storage cycling of amorphous-carbon-sheathed Ni3S2 arrays and investigation by in situ TEM characterization. Materials Today Energy, 2017, 5, 99-106.	4.7	22
60	Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires. Scientific Reports, 2018, 8, 4574.	3.3	22
61	Superplasticity in Gold Nanowires through the Operation of Multiple Slip Systems. Advanced Functional Materials, 2018, 28, 1805258.	14.9	21
62	Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten. Journal of Materials Science and Technology, 2022, 106, 33-40.	10.7	19
63	In situ atomistic observation of the deformation mechanism of Au nanowires with twin–twin intersection. Journal of Materials Science and Technology, 2020, 53, 118-125.	10.7	19
64	Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO ₄ nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes. CrystEngComm, 2016, 18, 3282-3288.	2.6	18
65	Deformation-induced interfacial transition zone in Cu/V nanolamellar multilayers. Scripta Materialia, 2019, 159, 104-108.	5.2	17
66	High-performance layered potassium vanadium oxide for K-ion batteries enabled by reduced long-range structural order. Journal of Materials Chemistry A, 2021, 9, 13125-13134.	10.3	17
67	Sulfurized Polyacrylonitrile as a High-Performance and Low-Volume Change Anode for Robust Potassium Storage. ACS Nano, 2021, 15, 18419-18428.	14.6	17
68	Role of intersecting grain boundary on the deformation of twin-twin intersection. Scripta Materialia, 2020, 188, 184-189.	5.2	15
69	Free-Standing Two-Dimensional Gold Membranes Produced by Extreme Mechanical Thinning. ACS Nano, 2020, 14, 17091-17099.	14.6	15
70	Atomic-scale study on the precipitation behavior of an Al–Zn–Mg–Cu alloy during isochronal aging. Journal of Materials Science and Technology, 2022, 108, 281-292.	10.7	15
71	Coordinated grain boundary deformation governed nanograin annihilation in shear cycling. Journal of Materials Science and Technology, 2021, 86, 180-191.	10.7	14
72	Twin-coupled shear bands in an ultrafine-grained CoCrFeMnNi high-entropy alloy deformed at 77K. Materials Research Letters, 2022, 10, 385-391.	8.7	14

#	Article	IF	Citations
73	In situ nanomechanical testing of twinned metals in a transmission electron microscope. MRS Bulletin, 2016, 41, 305-313.	3.5	13
74	Mechanical property of metallic nanowires: the shorter is stronger and ductile. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 164-169.	5.6	13
75	Role of interfacial transition zones in the fracture of Cu/V nanolamellar multilayers. Materials Research Letters, 2020, 8, 299-306.	8.7	13
76	A geometrical model for grain boundary migration mediated formation of multifold twins. International Journal of Plasticity, 2022, 148, 103128.	8.8	12
77	Hydrothermal synthesis and formation mechanism of single-crystal Auivillius Bi4Ti3O12 nanosheets with ammonium bismuth citrate (C6H10BiNO8) as Bi sources. Journal of Crystal Growth, 2017, 476, 31-37.	1.5	10
78	Penta-Twin Destruction by Coordinated Twin Boundary Deformation. Nano Letters, 2021, 21, 8378-8384.	9.1	10
79	Shear band mediated ï‰ phase transformation in Nb single crystals deformed at 77 K. Materials Research Letters, 2021, 9, 523-530.	8.7	10
80	Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals. Journal of Materials Science and Technology, 2022, 125, 182-191.	10.7	9
81	Fatigue-induced interface damage in Cu/V nanoscale metallic multilayers. Scripta Materialia, 2021, 190, 103-107.	5.2	8
82	Long-term degradation behavior of slurry aluminide coating on Super304H stainless steel at 650 °C. Corrosion Science, 2021, 178, 109054.	6.6	7
83	Shock-induced α" martensitic transformation in Nb single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143274.	5.6	7
84	Tensile Deformation Behaviors of CuNi Alloy Processed by Equal Channel Angular Pressing. Advanced Engineering Materials, 2010, 12, 304-311.	3.5	6
85	A comprehensive investigation of phase evolution of Al-Si coating during the prolonged aging at 650 \hat{A}° C. Corrosion Science, 2021, 189, 109605.	6.6	6
86	Directing the deposition of lithium metal to the inner concave surface of graphitic carbon tubes to enable lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 16936-16942.	10.3	5
87	Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Research, 2023, 16, 4901-4907.	10.4	4
88	Combined effect of Sn addition and pre-ageing on natural secondary and artificial ageing of Al–Mg–Si alloys. Journal of Materials Science, 2022, 57, 2149-2162.	3.7	3
89	Mechanical Properties and Fracture Behavior of Laser Powder-Bed-Fused GH3536 Superalloy. Metals, 2022, 12, 1165.	2.3	3
90	Inclination-governed deformation of dislocation-type grain boundaries. Journal of Materials Research, 2021, 36, 1306-1315.	2.6	2

#	Article	IF	CITATIONS
91	Bichannel design inspired by membrane pump: a rate booster for the conversion-type anode of sodium-ion battery. Journal of Materials Chemistry A, 2022, 10, 3373-3381.	10.3	2
92	Diffusive crack-grain interplay in freestanding nanocrystalline silver thin film. Materialia, 2021, 17, 101116.	2.7	1
93	Interactions between Dislocations and Penta-Twins in Metallic Nanocrystals. Metals, 2021, 11, 1775.	2.3	1
94	Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating. Microscopy and Microanalysis, 2017, 23, 2018-2019.	0.4	0