Kimitaka Kawamura

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7750763/kimitaka-kawamura-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 126 22,413 457 h-index g-index citations papers 25,365 5.8 7.09 537 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
457	Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 1373-1393	6.8	O
456	Seasonal changes in stable carbon isotopic composition in the bulk aerosol and gas phases at a suburban site in Prague. <i>Science of the Total Environment</i> , 2022 , 803, 149767	10.2	3
455	Relationship of 137Cs with Fungal Spore Tracers in the Ambient Aerosols from Fukushima after the 2011 Nuclear Accident, East Japan. <i>Atmosphere</i> , 2022 , 13, 413	2.7	
454	Molecular distributions of dicarboxylic acids, oxocarboxylic acids, and dicarbonyls in aerosols over Tuoji Island in the Bohai Sea: Effects of East Asian continental outflow. <i>Atmospheric Research</i> , 2022 , 10	06∮5⁴4	
453	Unraveling the sources of atmospheric organic aerosols over the Arabian Sea: Insights from the stable carbon and nitrogen isotopic composition <i>Science of the Total Environment</i> , 2022 , 154260	10.2	O
452	Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 5515-5533	6.8	1
451	Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China Insights from organic molecular compositions. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 6449-6470	6.8	Ο
450	Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China. <i>Environmental Pollution</i> , 2021 , 294, 118578	9.3	0
449	Decadal Variations in Hydroxy Fatty Acids Over Chichijima Island in the North Pacific: Long-Term Seasonal Variability in Plant and Microbial Markers. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033347	4.4	
448	Distinctive Sources Govern Organic Aerosol Fractions with Different Degrees of Oxygenation in the Urban Atmosphere. <i>Environmental Science & Environmental Science & Environme</i>	10.3	3
447	Measurement report: Diurnal and temporal variations of sugar compounds in suburban aerosols from the northern vicinity of Beijing, China han influence of biogenic and anthropogenic sources. Atmospheric Chemistry and Physics, 2021, 21, 4959-4978	6.8	2
446	The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?. <i>Earth System Science Data</i> , 2021 , 13, 1561-1592	10.5	1
445	Dry-deposition of inorganic and organic nitrogen aerosols to the Arabian Sea: Sources, transport and biogeochemical significance in surface waters. <i>Marine Chemistry</i> , 2021 , 231, 103938	3.7	4
444	Low molecular weight dicarboxylic acids, oxocarboxylic acids and Edicarbonyls as ozonolysis products of isoprene: Implication for the gaseous-phase formation of secondary organic aerosols. <i>Science of the Total Environment</i> , 2021 , 769, 144472	10.2	3
443	Biomass Burning is an Important Source of Organic Aerosols in Interior Alaska. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD034586	4.4	3
442	Why airborne transmission hasn® been conclusive in case of COVID-19? An atmospheric science perspective. <i>Science of the Total Environment</i> , 2021 , 773, 145525	10.2	20
441	Seasonal Characteristics of Biogenic Secondary Organic Aerosols Over Chichijima Island in the Western North Pacific: Impact of Biomass Burning Activity in East Asia. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD032987	4.4	4

440	Molecular markers for fungal spores and biogenic SOA over the Antarctic Peninsula: Field measurements and modeling results. <i>Science of the Total Environment</i> , 2021 , 762, 143089	10.2	3
439	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosol. <i>Environmental Pollution</i> , 2021 , 268, 115906	9.3	13
438	Influence of forest fires on the formation processes of low molecular weight dicarboxylic acids, Ebxocarboxylic acids, pyruvic acid and ⊞icarbonyls in springtime fine (PM2.5) aerosols over Southeast Asia. <i>Atmospheric Environment</i> , 2021 , 246, 118065	5.3	3
437	Alpine snowpit profiles of polar organic compounds from Mt. Tateyama central Japan: Atmospheric transport of organic pollutants with Asian dust. <i>Atmospheric Environment</i> , 2021 , 244, 117923	5.3	
436	Compound-Specific Radiocarbon Analysis of Low Molecular Weight Dicarboxylic Acids in Ambient Aerosols Using Preparative Gas Chromatography: Method Development. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 135-141	11	2
435	Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer. <i>Environmental Science & Environmental Science & Env</i>	10.3	8
434	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Yearß Eve. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 11453-11465	6.8	5
433	Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 12949-12963	6.8	1
432	Characterization of dicarboxylic acids, oxoacids, and Edicarbonyls in PM within the urban boundary layer in southern China: Sources and formation pathways. <i>Environmental Pollution</i> , 2021 , 285, 117185	9.3	1
431	Seasonal and temporal variations of ambient aerosols in a deciduous broadleaf forest from northern Japan: Contributions of biomass burning and biological particles. <i>Chemosphere</i> , 2021 , 279, 130	84b	2
430	Terrestrial lipid biomarkers in marine aerosols over the western North Pacific during 1990-1993 and 2006-2009. <i>Science of the Total Environment</i> , 2021 , 797, 149115	10.2	1
429	Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China. <i>Environmental Pollution</i> , 2021 , 291, 118114	9.3	1
428	Hydroxy Fatty Acids in Rainwater and Aerosols from Suburban Tokyo in Central Japan: The Impact of Long-Range Transport of Soil Microbes and Plant Waxes. <i>ACS Earth and Space Chemistry</i> , 2021 , 5, 257	- <u>3</u> :67	
427	13C Probing of Ambient Photo-Fenton Reactions Involving Iron and Oxalic Acid: Implications for Oceanic Biogeochemistry. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 964-976	3.2	4
426	Source forensics of n-alkanes and n-fatty acids in urban aerosols using compound specific radiocarbon/stable carbon isotopic composition. <i>Environmental Research Letters</i> , 2020 , 15, 074007	6.2	3
425	Ice core records of levoglucosan and dehydroabietic and vanillic acids from Aurora Peak in Alaska since the 1660s: a proxy signal of biomass-burning activities in the North Pacific Rim. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 597-612	6.8	9
424	Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 117-137	6.8	19
423	Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6803-6820	6.8	9

422	Multiphase MCMtAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 6725-6747	6.8	7
421	Molecular and spatial distributions of dicarboxylic acids, oxocarboxylic acids, and <i></i>-dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean. Atmospheric Chemistry and Physics, 2020 , 20, 6841-6860	6.8	9
420	Observation of vertical profiles of NO, O3, and VOCs to estimate their sources and sinks by inverse modeling in a Japanese larch forest. <i>J Agricultural Meteorology</i> , 2020 , 76, 1-10	1.1	3
419	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032200	4.4	12
418	Vertical distribution of particle-phase dicarboxylic acids, oxoacids and <i></i>-dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10331-10350	6.8	5
417	Molecular characteristics of water-soluble dicarboxylic acids, Ebxocarboxylic acids, pyruvic acid and Edicarbonyls in the aerosols from the eastern North Pacific. <i>Marine Chemistry</i> , 2020 , 224, 103812	3.7	3
416	Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. <i>Environmental Pollution</i> , 2020 , 257, 113616	9.3	23
415	High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. <i>Science of the Total Environment</i> , 2020 , 703, 134475	10.2	7
414	Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain. <i>Environmental Pollution</i> , 2020 , 256, 113401	9.3	17
413	Chemical composition of waste burning organic aerosols at landfill and urban sites in Delhi. <i>Atmospheric Pollution Research</i> , 2020 , 11, 554-565	4.5	9
412	Evidence for brown carbon absorption over the Bay of Bengal during the southwest monsoon season: a possible oceanic source. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1743-1758	4.3	3
411	Chemical characterization of wintertime aerosols over the Arabian Sea: Impact of marine sources and long-range transport. <i>Atmospheric Environment</i> , 2020 , 239, 117749	5.3	8
410	Water-soluble low molecular weight organics in cloud water at Mt. Tai Mo Shan, Hong Kong. <i>Science of the Total Environment</i> , 2019 , 697, 134095	10.2	3
409	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m a.s.l.): Seasonality, Sources, and Implications. <i>Environmental Science & Description (2019)</i> , 53, 12247-	12236	15
408	Dicarboxylic acids, oxocarboxylic acids and Edicarbonyls in atmospheric aerosols from Mt. Fuji, Japan: Implication for primary emission versus secondary formation. <i>Atmospheric Research</i> , 2019 , 221, 58-71	5.4	15
407	Hydroxy Fatty Acids in Remote Marine Aerosols over the Pacific Ocean: Impact of Biological Activity and Wind Speed. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 366-379	3.2	11
406	Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. <i>Atmospheric Environment</i> , 2019 , 213, 608-619	5.3	16
405	Compound-Specific Stable Carbon Isotope Ratios of Terrestrial Biomarkers in Urban Aerosols from Beijing, China. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1896-1904	3.2	3

404	Characterization of organic aerosols from a Chinese megacity during winter: predominance of fossil fuel combustion. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5147-5164	6.8	22
403	Abundance and Diurnal Trends of Fluorescent Bioaerosols in the Troposphere over Mt. Tai, China, in Spring. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 4158-4173	4.4	16
402	Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2725-2747	6.8	27
401	Distributions and sources of low-molecular-weight monocarboxylic acids in gas and particles from a deciduous broadleaf forest in northern Japan. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2421-2432	6.8	8
400	Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 3463-3479	6.8	19
399	Tracing the Relative Significance of Primary versus Secondary Organic Aerosols from Biomass Burning Plumes over Coastal Ocean Using Sugar Compounds and Stable Carbon Isotopes. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1471-1484	3.2	11
398	Large contribution of fine carbonaceous aerosols from municipal waste burning inferred from distributions of diacids and fatty acids. <i>Environmental Research Communications</i> , 2019 , 1, 071005	3.1	4
397	Dicarboxylic and Oxocarboxylic Acids in the Arctic Coastal Ocean (Beaufort Sea-Mackenzie Margin). <i>Global Biogeochemical Cycles</i> , 2019 , 33, 927-940	5.9	2
396	High Loadings of Water-Soluble Oxalic Acid and Related Compounds in PM2.5 Aerosols in Eastern Central India: Influence of Biomass Burning and Photochemical Processing. <i>Aerosol and Air Quality Research</i> , 2019 , 9, 2625-2644	4.6	6
395	Sources and Radiative Absorption of Water-Soluble Brown Carbon in the High Arctic Atmosphere. <i>Geophysical Research Letters</i> , 2019 , 46, 14881-14891	4.9	11
394	Organic tracers of fine aerosol particles in central Alaska: summertime composition and sources. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 14009-14029	6.8	9
393	Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. <i>Atmospheric Research</i> , 2019 , 220, 20-33	5.4	79
392	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. <i>Environmental Pollution</i> , 2019 , 247, 216-228	9.3	22
391	Dicarboxylic acids and related compounds in fine particulate matter aerosols in Huangshi, central China. <i>Journal of the Air and Waste Management Association</i> , 2019 , 69, 513-526	2.4	9
390	Seasonal variations of low molecular weight hydroxy-dicarboxylic acids and oxaloacetic acid in remote marine aerosols from Chichijima Island in the western North Pacific (December 2010November 2011). <i>Atmospheric Research</i> , 2018 , 204, 128-135	5.4	13
389	Organic Aerosols in South and East Asia: Composition and Sources. <i>Springer Remote Sensing/photogrammetry</i> , 2018 , 379-408	0.2	
388	Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and <i></i>-dicarbonyls in PM_{2.5} from Beijing, China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2749-2767	6.8	36
387	Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 81-101	6.8	25

386	Homologous series of n-alkanes (C19-C35), fatty acids (C12-C32) and n-alcohols (C8-C30) in atmospheric aerosols from central Alaska: Molecular distributions, seasonality and source indices. <i>Atmospheric Environment</i> , 2018 , 184, 87-97	5.3	13
385	Long-term (2001\(\textit{D}012 \)) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1291-1306	6.8	30
384	Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber. <i>Atmospheric Environment</i> , 2018 , 185, 15-28	5.3	18
383	Molecular distributions of dicarboxylic acids, oxocarboxylic acids and <i></i>-dicarbonyls in PM_{2.5} collected at the top of Mt. Tai, North China, during the wheat burning season of 2014. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10	6.8 741-1 0	19)758
382	Stable carbon and nitrogen isotopic compositions of fine aerosols (PM2.5) during an intensive biomass burning over Southeast Asia: Influence of SOA and aging. <i>Atmospheric Environment</i> , 2018 , 191, 478-489	5.3	15
381	Nighttime particle growth observed during spring in New Delhi: Evidences for the aqueous phase oxidation of SO2. <i>Atmospheric Environment</i> , 2018 , 188, 82-96	5.3	10
380	Dicarboxylic acids, oxocarboxylic acids and Edicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes. <i>Atmospheric Research</i> , 2018 , 202, 128-139	5.4	20
379	Occurrence of # dicarboxylic acids and Ebxoacids in surface waters of the Rhone River and fluxes into the Mediterranean Sea. <i>Progress in Oceanography</i> , 2018 , 163, 136-146	3.8	7
378	Distributions and sources of gaseous and particulate low molecular weight monocarboxylic acids in a deciduous broadleaf forest from northern Japan 2018 ,		1
377	Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. <i>Environmental Pollution</i> , 2018 , 243, 1579-1587	9.3	42
376	Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 13947-13967	6.8	31
375	Seasonal Distributions and Stable Carbon Isotope Ratios of Water-Soluble Diacids, Oxoacids, and Dicarbonyls in Aerosols from Sapporo: Influence of Biogenic Volatile Organic Compounds and Photochemical Aging. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 1220-1230	3.2	8
374	Genomic identification of the long-chain alkenone producer in freshwater Lake Toyoni, Japan: implications for temperature reconstructions. <i>Organic Geochemistry</i> , 2018 , 125, 189-195	3.1	8
373	The organic molecular composition, diurnal variation, and stable carbon isotope ratios of PM in Beijing during the 2014 APEC summit. <i>Environmental Pollution</i> , 2018 , 243, 919-928	9.3	12
372	Investigation on the hygroscopicity of oxalic acid and atmospherically relevant oxalate salts under sub- and supersaturated conditions. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 1069-1080	o 4·3	9
371	Biomass-burning derived aromatic acids in NIST standard reference material 1649b and the environmental implications. <i>Atmospheric Environment</i> , 2018 , 185, 180-185	5.3	6
370	Spatio-temporal distributions of dicarboxylic acids, Ebxocarboxylic acids, pyruvic acid, Edicarbonyls and fatty acids in the marine aerosols from the North and South Pacific. <i>Atmospheric Research</i> , 2017 , 185, 158-168	5.4	10
369	Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006. <i>Atmospheric Environment</i>	5.3	11

368	Sources and formation processes of water-soluble dicarboxylic acids, Ebxocarboxylic acids, Edicarbonyls, and major ions in summer aerosols from eastern central India. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 3630-3652	4.4	16
367	Seasonal changes in TC and WSOC and their 13C isotope ratios in Northeast Asian aerosols: land surfaceBiosphereEtmosphere interactions. <i>Acta Geochimica</i> , 2017 , 36, 355-358	2.2	8
366	Structural and Light-Absorption Characteristics of Complex Water-Insoluble Organic Mixtures in Urban Submicrometer Aerosols. <i>Environmental Science & Environmental Science & </i>	10.3	31
365	Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Year-round observations at Gosan, Jeju Island. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4112-4131	4.4	5
364	Secondary Organic Aerosol Formation over Coastal Ocean: Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds. <i>Environmental Science & Environmental Science & Environment</i>	10.3	28
363	Missing ozone-induced potential aerosol formation in a suburban deciduous forest. <i>Atmospheric Environment</i> , 2017 , 171, 91-97	5.3	2
362	Enhanced levels of atmospheric low-molecular weight monocarboxylic acids in gas and particulates over Mt. Tai, North China, during field burning of agricultural wastes. <i>Atmospheric Environment</i> , 2017 , 171, 237-247	5.3	16
361	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning 2017 ,		1
360	Sources and Formation Processes of Short-Chain Saturated Diacids (C2🖸4) in Inhalable Particles (PM10) from Huangshi City, Central China. <i>Atmosphere</i> , 2017 , 8, 213	2.7	3
359	Molecular distributions and isotopic compositions of organic aerosols over the western North Atlantic: Dicarboxylic acids, related compounds, sugars, and secondary organic aerosol tracers. <i>Organic Geochemistry</i> , 2017 , 113, 229-238	3.1	20
358	Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest. <i>Scientific Reports</i> , 2017 , 7, 8452	4.9	21
357	Long-term (2001-2013) observations of water-soluble dicarboxylic acids and related compounds over the western North Pacific: trends, seasonality and source apportionment. <i>Scientific Reports</i> , 2017 , 7, 8518	4.9	22
356	Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. <i>Environmental Pollution</i> , 2017 , 231, 654-662	9.3	50
355	Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India. <i>Archives of Environmental Contamination and Toxicology</i> , 2017 , 73, 456-473	3.2	6
354	Ozone alters the feeding behavior of the leaf beetle Agelastica coerulea (Coleoptera: Chrysomelidae) into leaves of Japanese white birch (Betula platyphylla var. japonica). <i>Environmental Science and Pollution Research</i> , 2017 , 24, 17577-17583	5.1	15
353	Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise. <i>Environmental Science & Environmental Science & Environm</i>	10.3	34
352	Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji. <i>Atmospheric Environment</i> , 2017 , 166, 255-262	5.3	20
351	Homologous series of low molecular weight (C1-C10) monocarboxylic acids, benzoic acid and hydroxyacids in fine-mode (PM2.5) aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Atmosphasis Fourteenment 2017, 167, 170, 180	5.3	18

350	Effects of chemical composition and mixing state on size-resolved hygroscopicity and cloud condensation nuclei activity of submicron aerosols at a suburban site in northern Japan in summer. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 9301-9318	4.4	11
349	Springtime influences of Asian outflow and photochemistry on the distributions of diacids, oxoacids and ⊞icarbonyls in the aerosols from the western North Pacific Rim. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2017 , 69, 1369341	3.3	6
348	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. <i>Environmental Science & Environmental Science & Environme</i>	10.3	49
347	Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014. <i>Environmental Pollution</i> , 2017 , 220, 863-872	9.3	34
346	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 8867-88	85 ⁸	76
345	Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM2.5) in Beijing, China. <i>Atmospheric Environment</i> , 2016 , 124, 166-175	5.3	41
344	Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. <i>Science of the Total Environment</i> , 2016 , 572, 1244-1251	10.2	39
343	Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific 2016 ,		1
342	Historical Trends of Biogenic SOA Tracers in an Ice Core from Kamchatka Peninsula. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 351-358	11	7
341	Dicarboxylic acids, Ebxocarboxylic acids, Edicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. <i>Chemosphere</i> , 2016 , 161, 27-42	8.4	41
340	Hydroxy fatty acids in snow pit samples from Mount Tateyama in central Japan: Implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 13,641-13,660	4.4	9
339	Dicarboxylic acids, oxoacids, benzoic acid, <i></i>-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5263-5282	6.8	34
338	Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14621-14633	6.8	18
337	A sub-decadal trend in diacids in atmospheric aerosols in eastern Asia. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 585-596	6.8	12
336	Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6407-6419	6.8	10
335	Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7497-7506	6.8	30
334	Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7695-77	768	14
333	Stable carbon and nitrogen isotopic composition of fine mode aerosols (PM2.5) over the Bay of Bengal: impact of continental sources. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2016 , 68, 315	1 ³ 8 ³	29

(2016-2016)

332	Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, exocarboxylic acids, Edicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3707-3717	4.4	29
331	Longitudinal distributions of dicarboxylic acids, Ebxoacids, pyruvic acid, Edicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling. <i>Global Biogeochemical Cycles</i> , 2016 , 30, 534-548	5.9	12
330	Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 6102-18	5.1	24
329	Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska. <i>Atmospheric Environment</i> , 2016 , 130, 95-104	5.3	36
328	Springtime variations of organic and inorganic constituents in submicron aerosols (PM1.0) from Cape Hedo, Okinawa. <i>Atmospheric Environment</i> , 2016 , 130, 84-94	5.3	14
327	New directions: Need for better understanding of source and formation process of phthalic acid in aerosols as inferred from aircraft observations over China. <i>Atmospheric Environment</i> , 2016 , 140, 147-149	5 -3	12
326	A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. <i>Atmospheric Research</i> , 2016 , 170, 140-160	5.4	195
325	Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants. Atmospheric Environment, 2016, 131, 243-253	5.3	30
324	Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8LT10 n-aldehydes in the presence of atmospheric aerosol components. <i>Atmospheric Environment</i> , 2016 , 126, 290-297	5.3	8
323	Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. <i>Science of the Total Environment</i> , 2016 , 544, 661-9	10.2	19
322	Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. <i>Atmospheric Environment</i> , 2016 , 130, 64-73	5.3	42
321	Comprehensive PM2.5 Organic Molecular Composition and Stable Carbon Isotope Ratios at Sonla, Vietnam: Fingerprint of Biomass Burning Components. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 2618-	2634	17
320	Water-Soluble Organic Nitrogen in High Mountain Snow Samples from Central Japan. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 632-639	4.6	5
319	Identification of hydroxy- and keto-dicarboxylic acids in remote marine aerosols using gas chromatography/quadruple and time-of-flight mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2016 , 30, 992-1000	2.2	8
318	Enrichment of C in diacids and related compounds during photochemical processing of aqueous aerosols: New proxy for organic aerosols aging. <i>Scientific Reports</i> , 2016 , 6, 36467	4.9	20
317	Hygroscopic growth of water-soluble matter extracted from remote marine aerosols over the western North Pacific: Influence of pollutants transported from East Asia. <i>Science of the Total Environment</i> , 2016 , 557-558, 285-95	10.2	16
316	Characterisation of water-soluble organic aerosols at a site on the southwest coast of India. <i>Journal of Atmospheric Chemistry</i> , 2016 , 73, 181-205	3.2	9
315	Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China. <i>Environmental Science & Environmental Scie</i>	10.3	31

314	Molecular Markers of Secondary Organic Aerosol in Mumbai, India. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 4659-67	10.3	35
313	Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa. <i>Atmospheric Environment</i> , 2016 , 130, 113-119	5.3	24
312	Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim. <i>Atmospheric Environment</i> , 2016 , 130, 105-112	5.3	18
311	Brown carbon in the cryosphere: Current knowledge and perspective. <i>Advances in Climate Change Research</i> , 2016 , 7, 82-89	4.1	39
310	Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 2684-2699	3.7	9
309	Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy. <i>Environmental Science & Matrix Spectroscopy</i> , 2016 , 50, 10351-10360	10.3	87
308	Investigation of the tracers for plastic-enriched waste burning aerosols. <i>Atmospheric Environment</i> , 2015 , 108, 49-58	5.3	65
307	Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1573-1584	6.8	167
306	Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. <i>Nature Communications</i> , 2015 , 6, 7587	17.4	36
305	Spatial distributions of dicarboxylic acids, Ebxoacids, pyruvic acid and Edicarbonyls in the remote marine aerosols over the North Pacific. <i>Marine Chemistry</i> , 2015 , 172, 1-11	3.7	15
304	Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest. <i>Environmental Research Letters</i> , 2015 , 10, 034015	6.2	25
303	Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. <i>Scientific Reports</i> , 2015 , 5, 9580	4.9	143
302	High abundances of dicarboxylic acids, oxocarboxylic acids, and Edicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 12902-18	5.1	26
301	A new isolation method for biomass-burning tracers in snow: Measurements of p -hydroxybenzoic, vanillic, and dehydroabietic acids. <i>Atmospheric Environment</i> , 2015 , 122, 142-147	5.3	14
300	Ice core profiles of saturated fatty acids (C 12:0 🕻 30:0) and oleic acid (C 18:1) from southern Alaska since 1734 AD: A link to climate change in the Northern Hemisphere. <i>Atmospheric Environment</i> , 2015 , 100, 202-209	5.3	16
299	Time-resolved distributions of bulk parameters, diacids, ketoacids and ⊞icarbonyls and stable carbon and nitrogen isotope ratios of TC and TN in tropical Indian aerosols: Influence of land/sea breeze and secondary processes. <i>Atmospheric Research</i> , 2015 , 153, 188-199	5.4	16
298	Long-term (2001-2012) observation of the modeled hygroscopic growth factor of remote marine TSP aerosols over the western North Pacific: impact of long-range transport of pollutants and their mixing states. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 29344-53	3.6	8
297	Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols. <i>Journal of Geophysical Research D:</i> Atmospheres 2015 120 4155-4168	4.4	23

296	Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 5504-5523	4.4	43
295	Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations. <i>Scientific Reports</i> , 2015 , 5, 14450	4.9	11
294	Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing. <i>Atmospheric Environment</i> , 2015 , 123, 18-24	5.3	13
293	Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and Edicarbonyls over the western North Pacific: Sources and formation pathways. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 5010-5035	4.4	26
292	Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and Edicarbonyls over the North Pacific. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 5191-5213	4.4	11
291	Emission of methyl chloride from a fern growing in subtropical, temperate, and cool-temperate climate zones. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 1142-1149	3.7	9
290	Variations in global methane sources and sinks during 1910\(\mathbb{Q}\)010. Atmospheric Chemistry and Physics, 2015, 15, 2595-2612	6.8	91
289	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids and benzoic acid in PM_{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 3111-3123	6.8	52
288	Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and Edicarbonyls. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 7999-8012	6.8	32
287	Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 9883-9896	6.8	26
286	Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a <l>Larix kaempferi</l> forest. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1202	<u>6.8</u> 9-120	4 1 8
285	Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1959-19	6.8 73	73
284	A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6437-6453	6.8	45
283	Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon. <i>Biogeosciences</i> , 2015 , 12, 7071-7080	4.6	10
282	Characteristics, seasonality and sources of inorganic ions and trace metals in North-east Asian aerosols. <i>Environmental Chemistry</i> , 2015 , 12, 338	3.2	12
281	Fluorescent water-soluble organic aerosols in the High Arctic atmosphere. <i>Scientific Reports</i> , 2015 , 5, 9845	4.9	65
2 80	Hydroxy fatty acids in marine aerosols as microbial tracers: 4-year study on Eland Ehydroxy fatty acids from remote Chichijima Island in the western North Pacific. <i>Atmospheric Environment</i> , 2015 , 115, 89-100	5.3	12
279	North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records. <i>Quaternary Science Reviews</i> , 2015 , 129, 111-127	3.9	39

278	Seasonal variations of stable carbon isotopic composition of bulk aerosol carbon from Gosan site, Jeju Island in the East China Sea. <i>Atmospheric Environment</i> , 2014 , 94, 316-322	5.3	27
277	Stable carbon isotopic variation of long chain n-alkanoic acids in the equatorial Pacific sediments over the last 40 Ma: Implications for expansion of C4 grassland in South America. <i>Organic Geochemistry</i> , 2014 , 76, 62-71	3.1	3
276	Secondary production of organic aerosols from biogenic VOCs over Mt. Fuji, Japan. <i>Environmental Science & Environmental Scien</i>	10.3	59
275	Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 259-273	4.4	15
274	One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1819-1836	6.8	72
273	Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM₁₀) over central China. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4185-41	€8	23
272	Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by deciduous forest (Sapporo, northern Japan) during the summer of 2011. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 7519-7531	6.8	4
271	Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 1440-1454	4.4	43
270	Hygroscopic behavior of water-soluble matter extracted from biomass burning aerosols collected at a rural site in Tanzania, East Africa. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 12,233	3-41 2 ,24	.5 ¹⁹
269	Hygroscopic properties of particles nebulized from water extracts of aerosols collected at Chichijima Island in the western North Pacific: An outflow region of Asian dust. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 167-178	4.4	27
268	High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. <i>Geophysical Research Letters</i> , 2014 , 41, 3649-3657	4.9	55
267	Low-molecular-weight hydroxyacids in marine atmospheric aerosol: evidence of a marine microbial origin. <i>Biogeosciences</i> , 2014 , 11, 4407-4414	4.6	26
266	Seasonal distributions and sources of low molecular weight dicarboxylic acids, Ebxocarboxylic acids, pyruvic acid, Edicarbonyls and fatty acids in ambient aerosols from subtropical Okinawa in the western Pacific Rim. <i>Environmental Chemistry</i> , 2014 , 11, 673	3.2	21
265	Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing: implication for photochemical aging during atmospheric transport. <i>Science of the Total Environment</i> , 2014 , 499, 154-65	10.2	21
264	Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: sources and contribution from burning of C3 and C4 plants to organic aerosols. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2014 , 66, 20176	3.3	23
263	Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, glyoxylic acid and glyoxal in tropical aerosols: implications for photochemical processes of organic aerosols. <i>Tellus, Series B: Chemical and Physical Meteorology,</i> 2014 , 66, 23702	3.3	7
262	n-Alkanes in Fresh Snow in Hokkaido, Japan: Implications for Ice Core Studies. <i>Arctic, Antarctic, and Alpine Research</i> , 2013 , 45, 119-131	1.8	4
261	Observation of new particle formation over a mid-latitude forest facing the North Pacific. <i>Atmospheric Environment</i> , 2013 , 64, 77-84	5.3	18

(2012-2013)

260	Paleoclimate variability in central Taiwan during the past 30Kyrs reflected by pollen, ¶3CTOC, and n-alkane-D records in a peat sequence from Toushe Basin. <i>Journal of Asian Earth Sciences</i> , 2013 , 69, 166-176	2.8	18
259	Influence of aerosol source regions and transport pathway on D of terrestrial biomarkers in atmospheric aerosols from the East China Sea. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 106, 164-176	5.5	20
258	Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. <i>Marine Chemistry</i> , 2013 , 148, 22-32	3.7	99
257	Historical trends of atmospheric black carbon on tibetan plateau as reconstructed from a 150-year lake sediment record. <i>Environmental Science & Environmental Science & Envir</i>	10.3	101
256	Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990¶993 and 2006¶009 periods. <i>Atmospheric Environment</i> , 2013 , 67, 448-458	5.3	57
255	Enhanced modern carbon and biogenic organic tracers in Northeast Asian aerosols during spring/summer. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 2362-2371	4.4	34
254	Different characteristics of new particle formation between urban and deciduous forest sites in Northern Japan during the summers of 2010\(\overline{D}\) 011. Atmospheric Chemistry and Physics, 2013, 13, 51-68	6.8	23
253	Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5369-5380	6.8	51
252	High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and Edicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8285-8302	6.8	133
251	Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10325-10338	6.8	82
250	Molecular composition of dicarboxylic acids, ketocarboxylic acids, Edicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2235-2251	6.8	48
249	Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4667-4680	6.8	64
248	Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8265-8283	6.8	36
247	Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core. <i>Climate of the Past</i> , 2013 , 9, 2489-2505	3.9	89
246	On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr. <i>Climate of the Past</i> , 2013 , 9, 583-596	3.9	29
245	Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation. <i>Biogeosciences</i> , 2013 , 10, 653-667	4.6	128
244	Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. <i>Atmospheric Environment</i> , 2012 , 55, 234-239	5.3	123
243	Low molecular weight (C1t10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan. <i>Atmospheric Environment</i> , 2012 , 62, 272-280	5.3	21

242	Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, northern Japan during summertime. <i>Atmospheric Environment</i> , 2012 , 62, 622-630	5.3	10
241	Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and Edicarbonyls in size-resolved atmospheric particles from XiPan City, China. <i>Environmental Science & Camp; Technology</i> , 2012 , 46, 4783-91	10.3	95
240	Assessment for paleoclimatic utility of terrestrial biomarker records in the Okhotsk Sea sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012 , 61-64, 85-92	2.3	20
239	Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmospheric Chemistry and Physics, 2012, 12, 8359-8375	6.8	112
238	Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	62
237	Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		29
236	Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300years in the Kamchatka Peninsula, Northeast Asia. <i>Geochimica Et Cosmochimica Acta</i> , 2012 , 99, 317-329	5.5	8o
235	Distributions of low molecular weight dicarboxylic acids, ketoacids and dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer. <i>Biogeosciences</i> , 2012 , 9, 4725-4737	4.6	50
234	Application of urea adduction technique to polluted urban aerosols for the determination of hydrogen isotopic composition of n-alkanes. <i>International Journal of Environmental Analytical Chemistry</i> , 2012 , 92, 302-312	1.8	9
233	Assessment of hydrogen isotopic compositions of n-fatty acids as paleoclimate proxies in Lake Biwa sediments. <i>Journal of Quaternary Science</i> , 2012 , 27, 884-890	2.3	10
232	Measurement of overall uptake coefficients for HO₂ radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China). <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 11907-11916	6.8	41
231	Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1367	-68 -1376	69
230	Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4259-4277	6.8	108
229	Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and Edicarbonyls in Central Himalayan aerosols. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6645-6665	6.8	63
228	Stable carbon isotope ratios of ethane over the North Pacific: Atmospheric measurements and global chemical transport modeling. <i>Journal of Geophysical Research</i> , 2011 , 116,		6
227	Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific. <i>Journal of Geophysical Research</i> , 2011 , 116,		41
226	Molecular characterization of marine organic aerosols collected during a round-the-world cruise. Journal of Geophysical Research, 2011 , 116,		104
225	Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols. Journal of Geophysical Research, 2011, 116,		42

224	Hydroclimate variability in the North China Plain and its link with El NiôBouthern Oscillation since 1784 A.D.: Insights from tree-ring cellulose 🛭 80. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		41
223	Regional hydroclimate and precipitation 180 revealed in tree-ring cellulose 180 from different tree species in semi-arid Northern China. <i>Chemical Geology</i> , 2011 , 282, 19-28	4.2	49
222	Aircraft measurement of dicarboxylic acids in the free tropospheric aerosols over the western to central North Pacific. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2011 , 55, 777-786	3.3	2
221	Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 10911-10928	6.8	24
220	Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM_{2.5} in Pearl Delta River Region, China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 2197-2208	6.8	85
219	Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3037-3049	6.8	135
218	In-cloud oxalate formation in the global troposphere: a 3-D modeling study. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5761-5782	6.8	179
217	Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8215-8230	6.8	61
216	Diurnal variations of polar organic tracers in summer forest aerosols: A case study of a Quercus and Picea mixed forest in Hokkaido, Japan. <i>Geochemical Journal</i> , 2011 , 45, 297-308	0.9	36
215	Selected water-soluble organic compounds found in size-resolved aerosols collected from urban, mountain and marine atmospheres over East Asia. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2011 , 63, 371-381	3.3	28
214	Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. <i>Atmospheric Environment</i> , 2011 , 45, 2473-2479	5.3	95
213	Hygroscopic property of water-soluble organic-enriched aerosols in Ulaanbaatar, Mongolia during the cold winter of 2007. <i>Atmospheric Environment</i> , 2011 , 45, 2722-2729	5.3	26
212	Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: Evidence from fresh snow from Sapporo, northern Japan. <i>Atmospheric Environment</i> , 2011 , 45, 3553-3560	5.3	26
211	Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia. <i>Atmospheric Environment</i> , 2011 , 45, 5266-5272	5.3	16
210	The effects of accumulated refractory particles and the peak inert mode temperature on semi-continuous organic carbon and elemental carbon measurements during the CAREBeijing 2006 campaign. <i>Atmospheric Environment</i> , 2011 , 45, 7192-7200	5.3	11
209	Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China. <i>Geology</i> , 2011 , 39, 875-878	5	41
208	Water-soluble organic carbon, dicarboxylic acids, ketoacids, and ⊞dicarbonyls in the tropical Indian aerosols. <i>Journal of Geophysical Research</i> , 2010 , 115,		102
207	Size-segregated measurements of cloud condensation nucleus activity and hygroscopic growth for aerosols at Cape Hedo, Japan, in spring 2008. <i>Journal of Geophysical Research</i> , 2010 , 115,		49

206	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). <i>Journal of Geophysical Research</i> , 2010 , 115,		77
205	Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: Implications for atmospheric processing and source changes of aerosols. <i>Journal of Geophysical Research</i> , 2010 , 115,		60
204	Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	58
203	Seasonal variations of diacids, ketoacids, and Edicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during long-range transport. <i>Journal of Geophysical Research</i> , 2010 , 115,		52
202	Secondary formation of water-soluble organic acids and Edicarbonyls and their contributions to total carbon and water-soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring. <i>Journal of Geophysical Research</i> , 2010 , 115,		89
201	Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and ⊞icarbonyls. <i>Journal of Geophysical Research</i> , 2010 , 115,		56
200	Size distributions and chemical characterization of water-soluble organic aerosols over the western North Pacific in summer. <i>Journal of Geophysical Research</i> , 2010 , 115,		56
199	Contributions of modern and dead organic carbon to individual fatty acid homologues in spring aerosols collected from northern Japan. <i>Journal of Geophysical Research</i> , 2010 , 115,		9
198	Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondia, Brazil. <i>Journal of Aerosol Science</i> , 2010 , 41, 118-133	4.3	98
197	A compound-specific n-alkane 🛘 3C and D approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 599-613	5.5	59
196	Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 2010, 292, 201-2	5.1 3	356
195	Environmental influences over the last 16ka on compound-specific 🛮 3C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China. <i>Chemical Geology</i> , 2010 , 277, 261-268	4.2	53
194	Paleoenvironmental significance of compound-specific 13C variations in n-alkanes in the Hongyuan peat sequence from southwest China over the last 13 ka. <i>Organic Geochemistry</i> , 2010 , 41, 491	13457	29
193	Compound-specific stable carbon and hydrogen isotopic compositions of n-alkanes in urban atmospheric aerosols from Tokyo. <i>Geochemical Journal</i> , 2010 , 44, 419-430	0.9	19
192	Distributions and diurnal changes of low molecular weight organic acids and ^ ^alpha;-dicarbonyls in suburban aerosols collected at Mangshan, North China. <i>Geochemical Journal</i> , 2010 , 44, e17-e22	0.9	20
191	Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2663-2689	6.8	151
190	Size distributions of dicarboxylic acids, ketoacids, Edicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. <i>Atmospheric Chemistry and Physics</i> , 2010	6.8	130
189	Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation. Atmospheric Chemistry and Physics 2010, 10, 6087-6096	6.8	76

(2009-2010)

188	Molecular distributions of dicarboxylic acids, ketocarboxylic acids and Edicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmospheric Chemistry and Physics, 2010, 10, 2209-2225	6.8	154
187	Ubiquity of bisphenol A in the atmosphere. <i>Environmental Pollution</i> , 2010 , 158, 3138-43	9.3	163
186	Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: Implication for the origins of aerosol nitrogen in South and Southeast Asia. <i>Atmospheric Environment</i> , 2010 , 44, 3597-3604	5.3	64
185	Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. <i>Atmospheric Environment</i> , 2010 , 44, 3511-3518	5.3	95
184	Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt. Tai, Central East China. <i>Atmospheric Environment</i> , 2010 , 44, 4817-4826	5.3	86
183	Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography. <i>Atmospheric Environment</i> , 2010 , 44, 5316-5319	5.3	28
182	New Directions: Need for better understanding of plastic waste burning as inferred from high abundance of terephthalic acid in South Asian aerosols. <i>Atmospheric Environment</i> , 2010 , 44, 5320-5321	5.3	51
181	Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion 2009 ,		6
180	Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005. <i>Atmospheric Environment</i> , 2009 , 43, 219-227	5.3	54
179	Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. <i>Atmospheric Environment</i> , 2009 , 43, 2532-2540	5.3	94
178	Assessment of the aerosol water content in urban atmospheric particles by the hygroscopic growth measurements in Sapporo, Japan. <i>Atmospheric Environment</i> , 2009 , 43, 3416-3423	5.3	31
177	Airborne myxomycete spores: detection using molecular techniques. <i>Die Naturwissenschaften</i> , 2009 , 96, 147-51	2	33
176	Photochemical and other sources of organic compounds in the Canadian high arctic aerosol pollution during winter-spring. <i>Environmental Science & Environmental Science & Envi</i>	10.3	109
175	Organic molecular compositions and size distributions of chinese summer and autumn aerosols from nanjing: characteristic haze event caused by wheat straw burning. <i>Environmental Science & Environmental Science</i>	10.3	78
174	Isoprene, monoterpene, and sesquiterpene oxidation products in the high Arctic aerosols during late winter to early summer. <i>Environmental Science & Environmental Science & E</i>	10.3	122
173	Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16kyr. <i>Organic Geochemistry</i> , 2009 , 40, 671-677	3.1	84
172	Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. <i>Journal of Geophysical Research</i> , 2009 , 114,		114
171	Photochemical histories of nonmethane hydrocarbons inferred from their stable carbon isotope ratio measurements over east Asia. <i>Journal of Geophysical Research</i> , 2009 , 114,		11

170	Water-soluble organic compounds in PM2.5 and size-segregated aerosols over Mount Tai in North China Plain. <i>Journal of Geophysical Research</i> , 2009 , 114,		51
169	Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7711-7723	5.8	8o
168	Size-distributions of <i>n</i>-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8869-8882	5.8	92
167	Significant alteration in the hygroscopic properties of urban aerosol particles by the secondary formation of organics. <i>Geophysical Research Letters</i> , 2008 , 35,	ļ .9	20
166	Stable carbon isotopic ratios and ionic composition of the high-Arctic aerosols: An increase in <code>II3C</code> values from winter to spring. <i>Journal of Geophysical Research</i> , 2008 , 113,		41
165	Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long-range atmospheric transport. <i>Journal of Geophysical Research</i> , 2008 , 113,		126
164	Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. <i>Journal of Geophysical Research</i> , 2008 , 113,		169
163	Aircraft measurement of organic aerosols over China. <i>Environmental Science & Dience & Dience</i>	10.3	35
162	Chemical closure study on hygroscopic properties of urban aerosol particles in Sapporo, Japan. Environmental Science & Camp; Technology, 2007, 41, 6920-5	10.3	28
161	Dependence of CCN activity of less volatile particles on the amount of coating observed in Tokyo. <i>Journal of Geophysical Research</i> , 2007 , 112,		58
160	Bimodal size distributions of various organic acids and fatty acids in the marine atmosphere: Influence of anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia. <i>Journal of Geophysical Research</i> , 2007 , 112,		80
159	Chemistry of OH and HO2 radicals observed at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO2 and positive nighttime correlations with monoterpenes. <i>Journal of Geophysical Research</i> , 2007 , 112,		57
158	Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. <i>Journal of Geophysical Research</i> , 2007 , 112,		114
157	Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic. <i>Journal of Geophysical Research</i> , 2007 , 112,		36
156	High penetration of ultraviolet radiation in the south east Pacific waters. <i>Geophysical Research Letters</i> , 2007 , 34,	1.9	59
155	Time-series sediment trap record of alkenones from the western Sea of Okhotsk. <i>Marine Chemistry</i> , 2007 , 104, 253-265	3.7	36
154	Hydroxyl radical-induced photochemical formation of dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous solution. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 188, 135 ⁴	t₹9	38
153	Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. <i>Atmospheric Environment</i> , 2007 , 41, 407-416	5.3	119

152	Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls. <i>Atmospheric Environment</i> , 2007 , 41, 790-796	5.3	15
151	Contribution of Selected Dicarboxylic and EDxocarboxylic Acids in Ambient Aerosol to the m/z 44 Signal of an Aerodyne Aerosol Mass Spectrometer. <i>Aerosol Science and Technology</i> , 2007 , 41, 418-437	3.4	87
150	Radiocarbon content and stable carbon isotopic ratios of individual fatty acids in subsurface soil: Implication for selective microbial degradation and modification of soil organic matter. <i>Geochemical Journal</i> , 2007 , 41, 483-492	0.9	45
149	Latitudinal distribution of terrestrial lipid biomarkers and n-alkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 5934-5955	5.5	84
148	Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. <i>Atmospheric Environment</i> , 2006 , 40, 3030-3040	5.3	121
147	Stable carbon isotopic composition of low-molecular-weight dicarboxylic acids and ketoacids in remote marine aerosols. <i>Journal of Geophysical Research</i> , 2006 , 111,		31
146	Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo. <i>Journal of Geophysical Research</i> , 2006 , 111,		54
145	Time-resolved measurements of water-soluble organic carbon in Tokyo. <i>Journal of Geophysical Research</i> , 2006 , 111,		149
144	Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. <i>Environmental Science & Environmental Science & Envi</i>	10.3	256
143	Determination of low molecular weight dicarboxylic and ketocarboxylic acids in seawater samples. <i>Analytical Chemistry</i> , 2006 , 78, 6012-8	7.8	46
142	Wintertime organic aerosols in Christchurch and Auckland, New Zealand: contributions of residential wood and coal burning and petroleum utilization. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 5257-62	10.3	33
141	Low molecular weight dicarboxylic acids, ketoacids, and dicarbonyls in the fine particles from a roadway tunnel: possible secondary production from the precursors. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 6255-60	10.3	38
140	Seasonal changes in stable carbon isotopic composition of n-alkanes in the marine aerosols from the western North Pacific: Implications for the source and atmospheric transport. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 13-26	5.5	40
139	Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 2006 , 53, 253-270	2.5	31
138	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2017-2038	6.8	394
137	High loadings and source strengths of organic aerosols in China. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	41
136	Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic compounds at the Tomakomai larch forest station in Japan. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2006 , 58, 177-186	3.3	24
135	Water-Soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the southern ocean and western pacific ocean. <i>Journal of Atmospheric Chemistry</i> , 2006 , 53, 43-61	3.2	80

134	Molecular characteristics of urban organic aerosols from Nanjing: a case study of A mega-city in China. <i>Environmental Science & Environmental Science</i>	10.3	99
133	Age discrepancy between molecular biomarkers and calcareous foraminifera isolated from the same horizons of Northwest Pacific sediments. <i>Chemical Geology</i> , 2005 , 218, 73-89	4.2	30
132	Decreased surface salinity in the Sea of Okhotsk during the last glacial period estimated from alkenones. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	18
131	Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. <i>Atmospheric Environment</i> , 2005 , 39, 599-614	5.3	115
130	Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. <i>Atmospheric Environment</i> , 2005 , 39, 1945-1960	5.3	272
129	Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion. <i>Atmospheric Environment</i> , 2005 , 39, 5865-5875	5.3	74
128	Organic and inorganic compositions of marine aerosols from East Asia: Seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. <i>Geochemical Society Special Publications</i> , 2004 , 9, 243-265		65
127	Radiocarbon variability of fatty acids in semi-urban aerosol samples. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2004 , 223-224, 842-847	1.2	10
126	Determination of stable carbon isotopic compositions of low molecular weight dicarboxylic acids and ketocarboxylic acids in atmospheric aerosol and snow samples. <i>Analytical Chemistry</i> , 2004 , 76, 5762	2 -8 .8	55
125	Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. <i>Paleoceanography</i> , 2004 , 19, n/a-n/a		88
124	Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: Implications for lateral material transport and biological productivity. <i>Journal of Geophysical Research</i> , 2004 , 109,		44
123	Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. <i>Journal of Geophysical Research</i> , 2004 , 109,		53
122	Variation on the atmospheric concentrations of biogenic carbonyl compounds and their removal processes in the northern forest at Moshiri, Hokkaido Island in Japan. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		53
121	Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds. <i>Journal of Geophysical Research</i> , 2004 , 109,		53
120	Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. <i>Journal of Geophysical Research</i> , 2004 , 109,		139
119	Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. <i>Journal of Geophysical Research</i> , 2004 , 109, n/a-n/a		114
118	High abundance of gaseous and particulate 4-oxopentanal in the forestal atmosphere. <i>Chemosphere</i> , 2004 , 55, 1143-7	8.4	23
117	Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. <i>Organic Geochemistry</i> , 2004 , 35, 347-354	3.1	56

(2002-2004)

116	Sugarsdominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. <i>Environmental Science & Environmental Science & </i>	10.3	295
115	In situ measurements of butane and pentane isomers over the subtropical North Pacific. <i>Geochemical Journal</i> , 2004 , 38, 397-404	0.9	6
114	Measurement of Halogenated Dicarboxylic Acids in the Arctic Aerosols at Polar Sunrise. <i>Journal of Atmospheric Chemistry</i> , 2003 , 44, 323-335	3.2	12
113	Growth of organic aerosols by biogenic semi-volatile carbonyls in the forestal atmosphere. <i>Atmospheric Environment</i> , 2003 , 37, 2045-2050	5.3	72
112	. Tellus, Series B: Chemical and Physical Meteorology, 2003 , 55, 777-786	3.3	14
111	Trans-hemispheric contribution of C2t110 ⊞dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochemical Cycles, 2003, 17, n/a-n/a	5.9	82
110	Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. <i>Journal of Geophysical Research</i> , 2003 , 108,		125
109	Spatial distributions of oxygenated organic compounds (dicarboxylic acids, fatty acids, and levoglucosan) in marine aerosols over the western Pacific and off the coast of East Asia: Continental outflow of organic aerosols during the ACE-Asia campaign. <i>Journal of Geophysical</i>		133
108	Water-soluble dicarboxylic acids in the tropospheric aerosols collected over east Asia and western North Pacific by ACE-Asia C-130 aircraft. <i>Journal of Geophysical Research</i> , 2003 , 108,		52
107	Bimodal size distribution of C2II4 dicarboxylic acids in the marine aerosols. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	56
106	An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. <i>Journal of Geophysical Research</i> , 2003 , 108,		635
105	Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the Polar Sunrise Experiment 1997. <i>Journal of Geophysical Research</i> , 2003 , 108,		39
104	Four yearsPobservations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. <i>Global Biogeochemical Cycles</i> , 2003 , 17, 3-1-3-19	5.9	174
103	Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene. <i>Geophysical Research Letters</i> , 2003 , 30, 1-1-1-4	4.9	164
102	A model evaluation of the NO titration technique to remove atmospheric oxidants for the determination of atmospheric organic compounds. <i>Environmental Science & amp; Technology</i> , 2003 , 37, 1589-97	10.3	6
101	Dicarboxylic acids in the Arctic aerosols and snowpacks collected during ALERT 2000. <i>Atmospheric Environment</i> , 2002 , 36, 2491-2499	5.3	86
100	In situ measurement of isoprene in the marine air and surface seawater from the western North Pacific. <i>Atmospheric Environment</i> , 2002 , 36, 6051-6057	5.3	62
99	Carbon isotopic composition of fatty acids in the marine aerosols from the western North Pacific: implication for the source and atmospheric transport. <i>Environmental Science & Environmental Science</i>	10.3	59

98	Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles. <i>Journal of Geophysical Research</i> , 2002 , 107, AAC 1-1-AAC 1-10		149
97	Stable carbon isotopic compositions of light hydrocarbons over the western North Pacific and implication for their photochemical ages. <i>Journal of Geophysical Research</i> , 2002 , 107, ACH 2-1		33
96	An extremely turbid intermediate water in the Sea of Okhotsk: Implication for the transport of particulate organic matter in a seasonally ice-bound sea. <i>Geophysical Research Letters</i> , 2002 , 29, 4-1-4-4	4.9	45
95	Wet deposition of low molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species in Los Angeles. <i>Atmospheric Environment</i> , 2001 , 35, 3917-3926	5.3	88
94	A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and Edicarbonyls: A trend from Little Ice Age to the present (1540 to 1989 A.D.). <i>Journal of Geophysical Research</i> , 2001 , 106, 1331-1345		53
93	Compound specific radiocarbon and 🛘 3C measurements of fatty acids in a continental aerosol sample. <i>Geophysical Research Letters</i> , 2001 , 28, 4587-4590	4.9	42
92	A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. <i>Geochimica Et Cosmochimica Acta</i> , 2001 , 65, 791-802	5.5	80
91	Compound-Specific Radiocarbon Ages of Fatty Acids in Marine Sediments from the Western North Pacific. <i>Radiocarbon</i> , 2001 , 43, 949-956	4.6	33
90	Alkenone sea surface temperature in the Okhotsk Sea for the last 15 kyr <i>Geochemical Journal</i> , 2000 , 34, 283-293	0.9	34
89	Homologous series of C1II10 monocarboxylic acids and C1II6 carbonyls in Los Angeles air and motor vehicle exhausts. <i>Atmospheric Environment</i> , 2000 , 34, 4175-4191	5.3	116
88	Distributions of C2116 hydrocarbons over the western North Pacific and eastern Indian Ocean. <i>Atmospheric Environment</i> , 2000 , 34, 4373-4381	5.3	26
87	Isolation of individual fatty acids in sediments using preparative capillary gas chromatography (PCGC) for radiocarbon analysis at NIES-TERRA. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 172, 583-588	1.2	19
86	Determination of alpha- and beta-hydroxycarbonyls and dicarbonyls in snow and rain samples by GC/FID and GC/MS employing benzyl hydroxyl oxime derivatization. <i>Analytical Chemistry</i> , 2000 , 72, 4742	2 ⁷ 6 ⁸	27
85	Implications of carbon isotope ratios of C27-C33 alkanes and C37 alkenes for the sources of organic matter in the southern ocean surface sediments. <i>Geophysical Research Letters</i> , 2000 , 27, 233-236	4.9	6
84	Variations of terrestrial input and marine productivity in the Southern Ocean (48년S) during the last two deglaciations. <i>Paleoceanography</i> , 2000 , 15, 170-180		32
83	Total Carbon and Nitrogen Contents and Molecular Composition of Water Soluble Organic Matter in the Marine Aerosols from Western North to Tropical Central Pacific. <i>Ocean Sciences Research</i> , 2000 , 465-484		2
82	Distributions of Three- to Seven-Ring Polynuclear Aromatic Hydrocarbons on the Deep Sea Floor in the Central Pacific. <i>Environmental Science & Environmental &</i>	10.3	77
81	Depth ranges of alkenone production in the central Pacific Ocean. <i>Global Biogeochemical Cycles</i> , 1999 , 13, 695-704	5.9	66

80	Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. <i>Journal of Geophysical Research</i> , 1999 , 104, 3501-3509		344
79	Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. <i>Geophysical Research Letters</i> , 1999 , 26, 3101-3104	4.9	205
78	Implication of azelaic acid in a Greenland Ice Core for oceanic and atmospheric changes in high latitudes. <i>Geophysical Research Letters</i> , 1999 , 26, 871-874	4.9	7
77	Sulfur isotope records around Livello Bonarelli (northern Apennines, Italy) black shale at the Cenomanian-Turonian boundary. <i>Geology</i> , 1999 , 27, 535	5	48
76	Fluctuations of terrestrial and marine biomarkers in the western tropical Pacific during the last 23,300 years. <i>Paleoceanography</i> , 1997 , 12, 623-630		30
75	Alkenone sea surface temperature in the Southern Ocean for the last two deglaciations. <i>Geophysical Research Letters</i> , 1997 , 24, 679-682	4.9	40
74	Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific. <i>Geochimica Et Cosmochimica Acta</i> , 1997 , 61, 1911-1918	5.5	74
73	Molecular paleoclimatology: reconstruction of climate variabilities in the late Quaternary. <i>Organic Geochemistry</i> , 1997 , 27, 173-183	3.1	28
72	Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations. <i>Atmospheric Environment</i> , 1996 , 30, 1709-1722	5.3	420
71	Concentrations of monocar?ylic and dicar?ylic acids and aldehydes in southern California wet precipitations: Comparison of urban and nonurban samples and compositional changes during scavenging. <i>Atmospheric Environment</i> , 1996 , 30, 1035-1052	5.3	113
70	Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from Western Pacific. <i>Atmospheric Environment</i> , 1996 , 30, 1609-1619	5.3	104
69	Ice core record of fatty acids over the past 450 years in Greenland. <i>Geophysical Research Letters</i> , 1996 , 23, 2665-2668	4.9	23
68	Enhanced atmospheric transport of soil derived organic matter in spring over the high Arctic. <i>Geophysical Research Letters</i> , 1996 , 23, 3735-3738	4.9	17
67	Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. <i>Journal of Geophysical Research</i> , 1996 , 101, 18721-18728		204
66	Production of dicarboxylic acids in the Arctic atmosphere at polar sunrise. <i>Geophysical Research Letters</i> , 1995 , 22, 1253-1256	4.9	62
65	Identification of 4-oxoheptanedioic acid in the marine atmosphere by capillary gas chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 1994 , 687, 315-321	4.5	16
64	Small changes in the sea surface temperature during the last 20,000 years: Molecular evidence from the western tropical Pacific. <i>Geophysical Research Letters</i> , 1994 , 21, 2207-2210	4.9	45
63	Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. <i>Atmospheric Environment</i> , 1994 , 28, 449-459	5.3	286

62	Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. <i>Die Naturwissenschaften</i> , 1994 , 81, 502-505	2	53
61	Special Articles: Environmental Sciences and Analytical Chemistry. Determination of water soluble organic compounds in Arctic aerosols by capillary GC and GC/MS <i>Bunseki Kagaku</i> , 1994 , 43, 837-843	0.2	
60	Ice Core Record of Polycyclic Aromatic Hydrocarbons over the Past 400 Years. <i>Die Naturwissenschaften</i> , 1994 , 81, 502-505	2	
59	Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. <i>Environmental Science & Environmental Sci</i>	10.3	555
58	Identification of C2-C10 .omegaoxocarboxylic acids, pyruvic acid, and C2-C3 .alphadicarbonyls in wet precipitation and aerosol samples by capillary GC and GC/MS. <i>Analytical Chemistry</i> , 1993 , 65, 3505-	3 5 181	152
57	Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. <i>Journal of Oceanography</i> , 1993 , 49, 271-283	1.9	132
56	High abundance of low molecular weight organic acids in hypersaline spring water associated with a salt diapir. <i>Organic Geochemistry</i> , 1992 , 18, 469-476	3.1	20
55	.OMEGAOxocarboxylic acids in the sediment trap and sediment samples from the North Pacific: Implication for the transport of photooxidation products to deep-sea environments <i>Geochemical Journal</i> , 1990 , 24, 217-222	0.9	5
54	Atmospheric transport of soil-derived dicarboxylic acids over the North Pacific Ocean. <i>Die Naturwissenschaften</i> , 1990 , 77, 25-27	2	22
53	Mid-chain ketocarboxylic acids in the remote marine atmosphere: Distribution patterns and possible formation mechanisms. <i>Journal of Atmospheric Chemistry</i> , 1990 , 11, 107-122	3.2	50
52	Stabilities of carboxylic acids and phenols in los angeles rainwaters during storage. <i>Water Research</i> , 1990 , 24, 1419-1423	12.5	11
51	Pb2+/Pb0 Redox Equilibria in Sodium Borate, Silicate, and Aluminosilicate Melts. <i>Journal of the Electrochemical Society</i> , 1989 , 136, 1861-1864	3.9	10
50	Identification of aliphatic keto carboxylic acids in marine aerosols using capillary gas chromatographythass spectrometry. <i>Journal of Chromatography A</i> , 1988 , 438, 299-307	4.5	9
49	Identification of isomeric hydroxy fatty acids in aerosol samples by capillary gas chromatographyfhass spectrometry. <i>Journal of Chromatography A</i> , 1988 , 438, 309-317	4.5	10
48	Tightly bound fatty acids in recent sediments. A study of saponification condition <i>Geochemical Journal</i> , 1987 , 21, 219-225	0.9	2
47	Dicarboxylic acids generated by thermal alteration of kerogen and humic acids. <i>Geochimica Et Cosmochimica Acta</i> , 1987 , 51, 3201-7	5.5	60
46	Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	514
45	Early diagenesis of organic matter in the water column and sediments: Microbial degradation and resynthesis of lipids in Lake Haruna. <i>Organic Geochemistry</i> , 1987 , 11, 251-264	3.1	77

44	Identification of Ebxocarboxylic acids as acetal esters in aerosols using capillary gas chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 1987 , 390, 371-377	4.5	10
43	Implications of Ebxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. <i>Nature</i> , 1987 , 325, 330-332	50.4	296
42	Compositional change of organic matter in rainwater during precipitation events. <i>Atmospheric Environment</i> , 1986 , 20, 527-535		40
41	Biogenic and anthropogenic organic compounds in rain and snow samples collected in southern california. <i>Atmospheric Environment</i> , 1986 , 20, 115-124		97
40	Long-chain carboxylic acids in pyrolysates of Green River kerogen. <i>Organic Geochemistry</i> , 1986 , 10, 1059	9-65	30
39	Volatile organic acids generated from kerogen during laboratory heating. <i>Geochemical Journal</i> , 1986 , 20, 51-9	0.9	64
38	Behavior of lipid compounds on laboratory heating of a Recent sediment <i>Geochemical Journal</i> , 1985 , 19, 113-126	0.9	11
37	Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils. <i>Environmental Science & Environmental Science & Environme</i>	10.3	300
36	Capillary GC Determination of Short-Chain Dicarboxylic Acids in Rain, Fog, and Mist. <i>International Journal of Environmental Analytical Chemistry</i> , 1985 , 19, 175-188	1.8	42
35	The Determination of ⊞eto Acids and Oxalic Acid in Rain, Fog and Mist by HPLC. <i>International Journal of Environmental Analytical Chemistry</i> , 1985 , 19, 251-260	1.8	23
34	Distribution of lipid-class compounds in bottom sediments of freshwater lakes with different trophic status, in Japan. <i>Chemical Geology</i> , 1985 , 51, 123-133	4.2	25
33	Conversion of sedimentary fatty acids from extractable (unbound + bound) to tightly bound form during mild heating. <i>Organic Geochemistry</i> , 1985 , 8, 197-201	3.1	26
32	Early diagenesis of organic matter in water of Lake Haruna. (I) Flux of organic matter to the bottom by determination of carbon and nitrogen of sediment trap sample, particulates and sediments Japanese Journal of Limnology, 1985, 46, 297-302	0.1	1
31	Capillary gas chromatography determination of volatile organic acids in rain and fog samples. <i>Analytical Chemistry</i> , 1984 , 56, 1616-1620	7.8	110
30	Tightly bound aliphatic acids in Lake Biwa sediments: Their origin and stability. <i>Organic Geochemistry</i> , 1984 , 7, 121-126	3.1	37
29	Fatty acid geochemistry of a 200 m sediment core from Lake Biwa, Japan. Early diagenesis and paleoenvironmental information. <i>Geochimica Et Cosmochimica Acta</i> , 1984 , 48, 251-266	5.5	49
28	Organic compounds in the rainwater of Los Angeles. <i>Environmental Science & Environmental Science & En</i>	10.3	130
27	Tightly bound Ehydroxy acids in a Recent sediment. <i>Nature</i> , 1982 , 297, 144-145	50.4	44

26	Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. <i>Geochimica Et Cosmochimica Acta</i> , 1981 , 45, 149-155	5.5	48
25	Experimental diagenesis of fatty acids in a sediment: Changes in their existence forms upon heating <i>Geochemical Journal</i> , 1981 , 15, 1-8	0.9	20
24	Identification of polyunsaturated fatty acids in surface lacustrine sediments. <i>Chemical Geology</i> , 1980 , 28, 31-39	4.2	48
23	Organic geochemistry of a 200-meter core sample from Lake Biwa. IV. Variation of fatty acid composition in the upper 5-meter layers <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 1978 , 54, 75-80	4	
22	Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM _{2.5} in Pearl Delta River Region, China		4
21	Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific		1
20	Size distributions of dicarboxylic acids, ketoacids, Edicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols		1
19	Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation		4
18	Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical Indian aerosols		1
17	Measurement of overall uptake coefficients for HO ₂ radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang, China		1
16	Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing		1
15	Carbonaceous components, levoglucosan and inorganic ions in tropical aerosols from Tanzania, East Africa: implication for biomass burning contribution to organic aerosols		1
14	Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketoacids, and Edicarbonyls in the central Himalayan aerosols		4
13	Overview of the Mount Tai Experiment (MTX2006) in Central East China in June 2006: studies of significant regional air pollution		3
12	Diurnal variations of total carbon, dicarboxylic acids, ketoacids and Edicarbonyls in aerosols in the northern vicinity of Beijing		8
11	Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai		2
10	High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and ⊞dicarbonyls in the mountain aerosols over the North China Plain during wheat burning season		10
9	Year-round observations of water-soluble ionic species and trace metals in Sapporo aerosols: implication for significant contributions from terrestrial biological sources in Northeast Asia		5

LIST OF PUBLICATIONS

8	Dicarboxylic acids, ketocarboxylic acids, Edicarbonyls, fatty acids and benzoic acid in PM _{2.5} aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality	2
7	Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources	6
6	Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa	4
5	Dicarboxylic acids, oxoacids, benzoic acid, Edicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes	1
4	A 12 year observation of water-soluble inorganic ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust	1
3	Summertime contributions of isoprene, monoterpenes, and sesquiterpene oxidation to the formation of secondary organic aerosol in the troposphere over Mt. Tai, Central East China during MTX2006	15
2	Molecular distributions of dicarboxylic acids, ketocarboxylic acids and Edicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers	8
1	Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon	1