
Masayoshi Okubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible Degradable Hollow Nanoparticles from Curable Copolymers of Polylactic Acid for UV-Shielding Cosmetics. ACS Applied Nano Materials, 2022, 5, 4473-4483.	2.4	5
2	Synthesis of Micrometer-Sized Poly(methyl acrylate) by Temperature-Step Microsuspension Polymerization with lodoform Based on the "Radical Exit Depression―Effect [§] . Langmuir, 2021, 37, 3158-3165.	1.6	3
3	Incorporation Behavior of Nonionic Emulsifiers inside Particles and Secondary Particle Nucleation during Emulsion Polymerization of Styrene. Langmuir, 2020, 36, 9747-9755.	1.6	2
4	Synthesis of Block Copolymer Particles by One-Pot, Two-Step Dispersion Reversible Chain Transfer Catalyzed Polymerization (<i>Dispersion</i> RTCP) in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2019, 58, 21165-21170.	1.8	3
5	Role of Osmotic Pressure for the Formation of Sub-micrometer-Sized, Hollow Polystyrene Particles by Heat Treatment in Aqueous Dispersed Systems. Langmuir, 2019, 35, 12150-12157.	1.6	4
6	Partitioning effect of nitrogen catalyst into polymerizing particles on dispersion reversible chain transfer catalyzed polymerization (<i>dispersion</i> RTCP) of methyl methacrylate in supercritical carbon dioxide and organic solvents. Journal of Polymer Science Part A, 2019, 57, 613-620.	2.5	3
7	Microsuspension iodine transfer polymerization (ms ITP) for synthesis of micrometer-size, "hydrophilic―polymer particles. Polymer, 2018, 154, 128-134.	1.8	9
8	Synthesis of Micrometerâ€6ize Poly(Methyl Methacrylate) Particles by Utilizing Microsuspension Iodine Transfer Polymerization (<i>ms</i> ITP): Kinetic Approach. Macromolecular Theory and Simulations, 2018, 27, 1800029.	0.6	5
9	Innovative one-step synthesis of hollow polymer particles by microsuspension polymerization of styrene and methyl acrylate with Mg(OH)2 as dispersant. Colloid and Polymer Science, 2017, 295, 565-572.	1.0	2
10	Water Absorption Behavior of Polystyrene Particles Prepared by Emulsion Polymerization with Nonionic Emulsifiers and Innovative Easy Synthesis of Hollow Particles. Langmuir, 2017, 33, 3468-3475.	1.6	24
11	Hollow particles are produced by the burying of sulfate end-groups inside particles prepared by emulsion polymerization of styrene with potassium persulfate as initiator in the absence/presence of a nonionic emulsifier. Polymer Chemistry, 2017, 8, 6972-6980.	1.9	24
12	Particle Nucleation in the Initial Stage of Emulsifierâ€Free, Emulsion Organotelluriumâ€Mediated Living Radical Polymerization (Emulsion TERP) of Styrene: Kinetic Approach. Macromolecular Theory and Simulations, 2017, 26, 1600046.	0.6	4
13	Versatile synthesis of high performance, crosslinked polymer microcapsules with encapsulated n-hexadecane as heat storage materials by utilizing microsuspension controlled/living radical polymerization (ms CLRP) of ethylene glycol dimethacrylate with the SaPSeP method. Polymer, 2016, 106, 182-188.	1.8	15
14	Innovative synthesis of high performance poly(methyl methacrylate) microcapsules with encapsulated heat storage material by microsuspension iodine transfer polymerization (ms ITP). Solar Energy Materials and Solar Cells, 2016, 157, 996-1003.	3.0	36
15	A synthetic route to ultra-high molecular weight polystyrene (>106) with narrow molecular weight distribution by emulsifier-free, emulsion organotellurium-mediated living radical polymerization (emulsion TERP). Polymer Chemistry, 2016, 7, 2573-2580.	1.9	19
16	Preparation of hemispherical particles by cleavage of micrometer-sized, spherical polystyrene/poly(methyl methacrylate) composite particles with Janus structures: effect of polystyrene-b-poly(methyl methacrylate). Polymer Journal, 2015, 47, 255-258.	1.3	0
17	Latent Heat Enhancement of Paraffin Wax in Poly(divinylbenzene <i>-co-</i> methyl methacrylate) Microcapsule. Polymer-Plastics Technology and Engineering, 2015, 54, 779-785.	1.9	19
18	Dispersion Reversible Chain Transfer Catalyzed Polymerization (Dispersion RTCP) of Methyl Methacrylate in Supercritical Carbon Dioxide: Pushing the Limit of Selectivity of Chain Transfer Agent. Macromolecules, 2015, 48, 2473-2479.	2.2	11

#	Article	IF	CITATIONS
19	Do encapsulated heat storage materials really retain their original thermal properties?. Physical Chemistry Chemical Physics, 2015, 17, 1053-1059.	1.3	42
20	Preparation of hemispherical particles by cleavage of micrometer-sized, spherical poly(methyl) Tj ETQq0 0 0 rgE Colloid and Polymer Science, 2014, 292, 733-738.	BT /Overloc 1.0	k 10 Tf 50 707 7
21	Emulsifier-free, organotellurium-mediated living radical emulsion polymerization (emulsion TERP) of styrene: poly(dimethylaminoethyl methacrylate) macro-TERP agent. Polymer Chemistry, 2014, 5, 2784-2792.	1.9	15
22	Preparation of Stimuli-Responsive "Mushroom-Like―Janus Polymer Particles as Particulate Surfactant by Site-Selective Surface-Initiated AGET ATRP in Aqueous Dispersed Systems. Langmuir, 2014, 30, 7823-7832.	1.6	84
23	Polymer Colloids with Focus on Nonspherical Particles. , 2014, , 1-9.		Ο
24	Preparation of micrometerâ€sized, multifunctional capsule particles for cosmetic by microsuspension polymerization utilizing the selfâ€assembling of phase separated polymer method. Journal of Applied Polymer Science, 2013, 127, 2407-2413.	1.3	6
25	Emulsifierâ€free, organotelluriumâ€mediated living radical emulsion polymerization (emulsion TERP): Effect of monomer hydrophilicity. Journal of Polymer Science Part A, 2013, 51, 716-723.	2.5	14
26	Preparation of hemispherical polymer particles via phase separation induced by microsuspension polymerization. Colloid and Polymer Science, 2013, 291, 71-76.	1.0	6
27	Preparation of ionic liquid-encapsulated polymer particles. Colloid and Polymer Science, 2013, 291, 45-51.	1.0	24
28	Effect of partitioning of monomer and emulsifier in aqueous media on particle formation in emulsion homopolymerization of hydrophobic and hydrophilic monomers with a nonionic emulsifier. Polymer Journal, 2013, 45, 153-159.	1.3	9
29	Effect of stirring rate on particle formation in emulsifier-free, organotellurium-mediated living radical emulsion polymerization (emulsion TERP) of styrene. Polymer Journal, 2012, 44, 205-210.	1.3	21
30	lodine transfer dispersion polymerization with CHI3 and reversible chain transfer-catalyzed dispersion polymerization with N-iodosuccinimide of methyl methacrylate in supercritical carbon dioxide. Polymer Journal, 2012, 44, 1082-1086.	1.3	5
31	Recent Trends on Molecular/Particle Design by Controlled/Living Radical Polymerization in Aqueous Dispersed Systems. Journal of the Adhesion Society of Japan, 2012, 48, 248-261.	0.0	Ο
32	Emulsifier-free, organotellurium-mediated living radical emulsion polymerization (emulsion TERP) of methyl methacrylate with dimethyl ditelluride as the catalyst. Polymer Chemistry, 2012, 3, 1555.	1.9	27
33	Preparation of block copolymer particles by two-step, reversible chain transfer catalyzed polymerization (RTCP) with nitrogen catalyst in miniemulsion systems. Polymer Chemistry, 2012, 3, 1394.	1.9	14
34	lodine Transfer Polymerization (ITP with CHI ₃) and Reversible Chain Transfer Catalyzed Polymerization (RTCP with Nitrogen Catalyst) of Methyl Methacrylate in Aqueous Microsuspension Systems: Comparison with Bulk System. Macromolecules, 2012, 45, 2286-2291.	2.2	23
35	Preparation of Hemispherical Polymer Particles by Cleavage of a Janus Poly(methyl Methacrylate) /Polystyrene Composite Particleâ€Part CCCLVII of the series "Studies on Suspension and Emulsionâ€. Langmuir, 2012, 28, 12886-12892.	1.6	26
36	Preparation of hemispherical polystyrene particles utilizing the solvent evaporation method in aqueous dispersed systems. Polymer Journal, 2012, 44, 1112-1116.	1.3	15

#	Article	IF	CITATIONS
37	Experimental Evidence and Beneficial Use of Confined Space Effect in Nitroxide-Mediated Radical Microemulsion Polymerization (Microemulsion NMP) of <i>n</i> Butyl Acrylate. Macromolecules, 2012, 45, 7884-7889.	2.2	12
38	Preparation of poly(<i>n</i> â€butyl acrylate)â€ <i>b</i> â€polystyrene particles by emulsifierâ€free, organotelluriumâ€mediated living radical emulsion polymerization (emulsion TERP). Journal of Polymer Science Part A, 2012, 50, 1991-1996.	2.5	26
39	Preparation of poly(acrylic acid)â€ <i>b</i> â€polystyrene by twoâ€step atom transfer radical polymerization in supercritical carbon dioxide. Journal of Polymer Science Part A, 2012, 50, 2578-2584.	2.5	18
40	Effects of stirring prior to starting emulsion polymerization of styrene with nonionic emulsifier on particle formation and its incorporation. Colloid and Polymer Science, 2012, 290, 561-567.	1.0	4
41	lodine transfer dispersion polymerization (dispersion ITP) with CHI3 and reversible chain transfer catalyzed dispersion polymerization (dispersion RTCP) with GeI4 of styrene in supercritical carbon dioxide. Polymer, 2012, 53, 1212-1218.	1.8	19
42	Emulsifier-Free, Organotellurium-Mediated Living Radical Emulsion Polymerization of Styrene: Effect of Stirring Rate. Macromolecules, 2011, 44, 263-268.	2.2	36
43	Nitroxide-Mediated Radical Polymerization in Microemulsion (Microemulsion NMP) ofn-Butyl Acrylate. Macromolecules, 2011, 44, 5599-5604.	2.2	29
44	Emulsifier-free, organotellurium-mediated living radical emulsion polymerization of Styrene: Initial stage of polymerization. Polymer, 2011, 52, 2729-2734.	1.8	29
45	Emulsifierâ€Free, Organotelluriumâ€Mediated Living Radical Emulsion Polymerization of Styrene. Macromolecular Symposia, 2010, 288, 25-32.	0.4	28
46	Formation of Nonspherical Particles with Uneven Surface in Emulsion Copolymerization of Styrene and Methacrylic Acid with Nonionic Emulsifier. Macromolecular Symposia, 2010, 288, 33-40.	0.4	1
47	Preparation of Nylonâ€6 Particles in Ionic Liquids. Macromolecular Symposia, 2010, 288, 49-54.	0.4	19
48	Thermodynamic and kinetic considerations on the morphological stability of "hamburger-like― composite polymer particles prepared by seeded dispersion polymerization. Colloid and Polymer Science, 2010, 288, 879-886.	1.0	23
49	Effects of properties of the surface layer of seed particles on the formation of golf ball-like polymer particles by seeded dispersion polymerization. Polymer Journal, 2010, 42, 66-71.	1.3	28
50	Preparation of Micrometer-Sized, Onionlike Multilayered Block Copolymer Particles by Two-Step AGET ATRP in Aqueous Dispersed Systems: Effect of the Second-Step Polymerization Temperature. Langmuir, 2010, 26, 7029-7034.	1.6	49
51	A Novel Approach for Preparation of Micrometer-sized, Monodisperse Dimple and Hemispherical Polystyrene Particlesâ€Part CCCXXX of the series "Studies on Suspension and Emulsion― Langmuir, 2010, 26, 3848-3853.	1.6	63
52	Preparation of "Mushroom-like―Janus Particles by Site-Selective Surface-Initiated Atom Transfer Radical Polymerization in Aqueous Dispersed Systems. Langmuir, 2010, 26, 7843-7847.	1.6	126
53	Reversible Chain Transfer Catalyzed Polymerization (RTCP) of Methyl Methacrylate with Nitrogen Catalyst in an Aqueous Microsuspension System. Macromolecules, 2010, 43, 8703-8705.	2.2	46
54	Emulsifier-Free, Organotellurium-Mediated Living Radical Emulsion Polymerization of Styrene: Polymerization Loci. Macromolecules, 2010, 43, 7465-7471.	2.2	46

#	Article	IF	CITATIONS
55	Effect of Polymer End Group on the Morphology of Polystyrene/Poly(methyl methacrylate) Composite Particles Prepared by the Solvent Evaporation Method. Macromolecular Symposia, 2010, 288, 55-66.	0.4	5
56	A Novel Estimation Method of the Distribution of Carboxyl Groups Within Copolymer Particles Using Isothermal Titration Calorimeter. Macromolecular Symposia, 2009, 281, 135-141.	0.4	2
57	Gelation and Hollow Particle Formation in Nitroxideâ€Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2009, 210, 140-149.	1.1	36
58	Compartmentalization in NMP in Dispersed Systems: Relative Contributions of Confined Space Effect and Segregation Effect Depending on Nitroxide Type. Macromolecular Theory and Simulations, 2009, 18, 277-286.	0.6	34
59	Thermal properties of hexadecane encapsulated in poly(divinylbenzene) particles. Journal of Applied Polymer Science, 2009, 112, 3257-3266.	1.3	24
60	Preparation of multihollow polystyrene particles by seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier: effect of temperature. Colloid and Polymer Science, 2009, 287, 251-257.	1.0	13
61	Network formation in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion: Effect of macroinitiator hydrophilicity. Polymer, 2009, 50, 1632-1636.	1.8	17
62	Controlled/living heterogeneous radical polymerization in supercritical carbon dioxide. Journal of Polymer Science Part A, 2009, 47, 3711-3728.	2.5	105
63	Preparation of onion-like multilayered particles comprising mainly poly(iso-butyl) Tj ETQq1 1 0.784314 rgBT /O	verlock 10	Tf 50 422 Td (
64	Effects of the oil–water interface on network formation in nanogel synthesis using nitroxide-mediated radical copolymerization of styrene/divinylbenzene in miniemulsion. Polymer, 2009, 50, 5661-5667.	1.8	17
65	Compartmentalization in Atom Transfer Radical Polymerization of Styrene in Dispersed Systems: Effects of Target Molecular Weight and Halide End Group. Macromolecules, 2009, 42, 2488-2496.	2.2	45
66	Emulsifier-Free, Organotellurium-Mediated Living Radical Emulsion Polymerization of Butyl Acrylate. Macromolecules, 2009, 42, 1979-1984.	2.2	69
67	Incorporation of Nonionic Emulsifier Inside Carboxylated Polymer Particles during Emulsion Copolymerization: Influence of Methacrylic Acid Content. Langmuir, 2009, 25, 101-106.	1.6	19
68	Control of Layer Thickness of Onionlike Multilayered Composite Polymer Particles Prepared by the Solvent Evaporation Method. Macromolecules, 2009, 42, 7423-7429.	2.2	103
69	Nitroxide-Mediated Radical Polymerization of Styrene in Aqueous Microemulsion: Initiator Efficiency, Compartmentalization, and Nitroxide Phase Transfer. Macromolecules, 2009, 42, 6944-6952.	2.2	38
70	Preparation of Composite Polymer Particles by Seeded Dispersion Polymerization in Ionic Liquids. Macromolecular Symposia, 2009, 281, 54-60.	0.4	25
71	Preparation of divinylbenzene copolymer particles with encapsulated hexadecane for heat storage application. Colloid and Polymer Science, 2008, 286, 217-223.	1.0	35
72	Influence of water domain formed in hexadecane core inside cross-linked capsule particle on thermal properties for heat storage application. Colloid and Polymer Science, 2008, 286, 753-759.	1.0	35

#	Article	IF	CITATIONS
50	Preparation of micrometer-sized, monodisperse, hollow polystyrene/poly(ethylene glycol) Tj ETQq1 1 0.784314		
73	1335-1341.	1.0	13
74	Preparation of hollow poly(divinyl benzene) particles with multiple holes in the shell by microsuspension polymerization with the SaPSeP method. Colloid and Polymer Science, 2008, 286, 1561-1567.	1.0	13
75	Preparation of Polystyrene Particles by Dispersion Polymerization in an Ionic Liquid. Macromolecular Rapid Communications, 2008, 29, 567-572.	2.0	55
76	Quantification of spontaneous initiation in radical polymerization of styrene in aqueous miniemulsion at high temperature. Polymer, 2008, 49, 883-892.	1.8	27
77	Incorporation of nonionic emulsifiers inside styrene–methacrylic acid copolymer particles during emulsion copolymerization. Polymer, 2008, 49, 3042-3047.	1.8	18
78	TEMPO-mediated radical polymerization of styrene in aqueous miniemulsion: Macroinitiator concentration effects. Polymer, 2008, 49, 3428-3435.	1.8	28
79	Nitroxide-mediated precipitation polymerization of styrene in supercritical carbon dioxide: Effects of monomer loading and nitroxide partitioning on control. European Polymer Journal, 2008, 44, 4037-4046.	2.6	23
80	Use of Fluorescence-Labelled Macroinitiator to Investigate Nucleation Mechanism in Nitroxide-Mediated Crosslinking Polymerization in Aqueous Miniemulsion. Polymer Journal, 2008, 40, 298-299.	1.3	6
81	Effect of Polymer Polarity on the Shape of "Golf Ball-like―Particles Prepared by Seeded Dispersion Polymerization. Industrial & Engineering Chemistry Research, 2008, 47, 6445-6449.	1.8	38
82	Controlled/Living Radical Polymerization in Dispersed Systems. Chemical Reviews, 2008, 108, 3747-3794.	23.0	617
83	Effect of Molecular Weight on the Morphology of Polystyrene/Poly(methyl methacrylate) Composite Particles Prepared by the Solvent Evaporation Method. Langmuir, 2008, 24, 12267-12271.	1.6	94
84	Improved Control in Nitroxide-Mediated Radical Polymerization Using Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 2732-2734.	2.2	31
85	Preparation of Microcapsules Containing a Curing Agent for Epoxy Resin by Polyaddition Reaction with the Self-Assembly of Phase-Separated Polymer Method in an Aqueous Dispersed System. Langmuir, 2008, 24, 9254-9259.	1.6	22
86	Preparation of Poly (divinylbenzene) Particles with Encapsulated Hexadecane for Heat Storage Application. Kobunshi Ronbunshu, 2007, 64, 171-176.	0.2	9
87	Formation of "Snowmanlike―Polystyrene/Poly(methyl methacrylate)/Toluene Droplets Dispersed in an Aqueous Solution of a Nonionic Surfactant at Thermodynamic Equilibrium. Langmuir, 2007, 23, 11506-11512.	1.6	68
88	Organotellurium-Mediated Living Radical Polymerization in Miniemulsion. Macromolecules, 2007, 40, 9208-9211.	2.2	62
89	Atom Transfer Radical Polymerization in Miniemulsion:Â Partitioning Effects of Copper(I) and Copper(II) on Polymerization Rate, Livingness, and Molecular Weight Distributionâ€. Macromolecules, 2007, 40, 3062-3069.	2.2	67
90	Preparation of Multihollow Polymer Particles by Seeded Emulsion Polymerization Using Seed Particles with Incorporated Nonionic Emulsifier. Langmuir, 2007, 23, 8703-8708.	1.6	67

#	Article	IF	CITATIONS
91	Revisiting the Morphology Development of Solvent-Swollen Composite Polymer Particles at Thermodynamic Equilibriumâ€. Langmuir, 2007, 23, 5914-5919.	1.6	50
92	Preparation and Thermodynamic Stability of Micron-Sized, Monodisperse Composite Polymer Particles of Disc-like Shapes by Seeded Dispersion Polymerization. Langmuir, 2007, 23, 7958-7962.	1.6	116
93	Effect of Stabilizer on Formation of "Onionlike―Multilayered Polystyrene-block-poly(methyl) Tj ETQq1 1 0.78	4314 rgBT 1.6	/Overlock
94	Nitroxideâ€Mediated Radical Precipitation Polymerization of Styrene in Supercritical Carbon Dioxide. Macromolecular Chemistry and Physics, 2007, 208, 1813-1822.	1.1	39
95	Nitroxideâ€Mediated Radical Polymerization in Microemulsion. Macromolecular Rapid Communications, 2007, 28, 2346-2353.	2.0	40
96	Atom Transfer Radical Polymerization of <i>iso</i> â€Butyl Methacrylate in Microemulsion with Cationic and Non″onic Emulsifiers. Macromolecular Rapid Communications, 2007, 28, 2354-2360.	2.0	34
97	Compartmentalization in TEMPO-Mediated Radical Polymerization in Dispersed Systems: Effects of Macroinitiator Concentration. Macromolecular Theory and Simulations, 2007, 16, 221-226.	0.6	62
98	Gel formation and primary chain lengths in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion. Polymer, 2007, 48, 1229-1236.	1.8	50
99	Mechanical properties of cross-linked polymer particles prepared by nitroxide-mediated radical polymerization in aqueous micro-suspension. Polymer, 2007, 48, 3836-3843.	1.8	29
100	Nitroxideâ€mediated radical polymerization in miniemulsion: Bimolecular termination in monomerâ€free model systems. Journal of Polymer Science Part A, 2007, 45, 4995-5004.	2.5	20
101	Incorporation of nonionic emulsifier inside methacrylic polymer particles in emulsion polymerization. Colloid and Polymer Science, 2007, 285, 557-562.	1.0	22
102	Influence of hydrophilic–lipophilic balance of nonionic emulsifiers on emulsion copolymerization of styrene and methacrylic acid. Colloid and Polymer Science, 2007, 285, 1755-1761.	1.0	15
103	Effect of Colloidal Stabilizer on the Shape of Polystyrene/Poly(methyl methacrylate) Composite Particles Prepared in Aqueous Medium by the Solvent Evaporation Methodâ€. Langmuir, 2006, 22, 9397-9402.	1.6	158
104	Incorporation of Nonionic Emulsifiers Inside Particles in Emulsion Polymerization:Â Mechanism and Methods of Suppressionâ€. Langmuir, 2006, 22, 8727-8731.	1.6	39
105	Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-b-methyl methacrylate) Stabilizerâ€. Macromolecules, 2006, 39, 6853-6860.	2.2	58
106	Compartmentalization in Nitroxide-Mediated Radical Polymerization in Dispersed Systems. Macromolecules, 2006, 39, 8959-8967.	2.2	136
107	Nitroxide-mediated radical polymerization of styrene: Experimental evidence of chain transfer to monomer. Polymer, 2006, 47, 7900-7908.	1.8	51
108	Estimation of water absorption state within ionized carboxylated polymer particles with high sensitive differential scanning calorimetry. Colloid and Polymer Science, 2006, 284, 802-806.	1.0	4

#	Article	IF	CITATIONS
109	Estimation of distribution state of carboxyl groups within submicron-sized, carboxylated polymer particle with isothermal titration calorimeter. Colloid and Polymer Science, 2006, 284, 1319-1323.	1.0	14
110	Network Formation in Nitroxide-Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2006, 207, 1732-1741.	1.1	46
111	Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-block-styrene) Alkoxyamine as Initiator and Stabilizer. Macromolecular Rapid Communications, 2006, 27, 1465-1471.	2.0	42
112	Particle Size Effects in TEMPO-Mediated Radical Polymerization of Styrene in Aqueous Miniemulsion. Macromolecular Rapid Communications, 2006, 27, 2014-2018.	2.0	42
113	Effects of Laplace Pressure on Propagation and Termination in Aqueous Heterogeneous Free Radical Polymerization. Macromolecular Theory and Simulations, 2006, 15, 40-45.	0.6	8
114	Compartmentalization in Atom Transfer Radical Polymerization (ATRP) in Dispersed Systems. Macromolecular Theory and Simulations, 2006, 15, 608-613.	0.6	98
115	Preparation of block copolymer particles by two-step atom transfer radical polymerization in aqueous media and its unique morphology. Polymer, 2005, 46, 1045-1049.	1.8	88
116	Morphology of polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) composite particles. Polymer, 2005, 46, 1151-1156.	1.8	72
117	First nitroxide-mediated free radical dispersion polymerizations of styrene in supercritical carbon dioxide. Polymer, 2005, 46, 9769-9777.	1.8	53
118	Nitroxide-Mediated Controlled/Living Free Radical Copolymerization of Styrene and Divinylbenzene in Aqueous Miniemulsion. Macromolecular Rapid Communications, 2005, 26, 955-960.	2.0	80
119	Nitroxide-Mediated Radical Polymerization in Miniemulsion at Stationary State: Rationale for Independence of Polymerization Rate on Nitroxide Partitioning Using Oil-Phase Initiation. Macromolecular Theory and Simulations, 2005, 14, 415-420.	0.6	35
120	Preparation of cured epoxy resin particles having one hollow by polyaddition reaction. Polymer, 2005, 46, 1051-1056.	1.8	34
121	Preparation of polystyrene/poly(methyl methacrylate) composite particles having a dent. Colloid and Polymer Science, 2005, 283, 691-698.	1.0	42
122	Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid and Polymer Science, 2005, 283, 793-798.	1.0	70
123	Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization. Colloid and Polymer Science, 2005, 283, 1041-1045.	1.0	85
124	Preparation of poly(methyl methacrylate) particles by dispersion polymerization with organic peroxide in the presence of trimethylsiloxy terminated poly(dimethylsiloxane) in supercritical carbon dioxide. Colloid and Polymer Science, 2005, 284, 327-333.	1.0	9
125	Preparation of Hollow Polymer Particles with a Single Hole in the Shell by SaPSeP£. Langmuir, 2005, 21, 5655-5658.	1.6	85
126	Dispersion atom transfer radical polymerization of methyl methacrylate with bromo-terminated poly(dimethylsiloxane) in supercritical carbon dioxide. Designed Monomers and Polymers, 2004, 7, 553-562.	0.7	41

#	Article	IF	CITATIONS
127	Production of poly(methyl methacrylate) particles by dispersion polymerization with mercaptopropyl terminated poly(dimethylsiloxane) stabilizer in supercritical carbon dioxide. Colloid and Polymer Science, 2004, 282, 569-574.	1.0	15
128	Preparation of block copolymer by atom transfer radical seeded emulsion polymerization. Colloid and Polymer Science, 2004, 282, 747-752.	1.0	52
129	Effect of hydrophilicity of polymer particles on their glass transition temperatures in the emulsion state. Colloid and Polymer Science, 2004, 282, 1150-1154.	1.0	9
130	Formation mechanism of an "onionlike―multilayered structure by reconstruction of the morphology of micron-sized, monodisperse poly(methyl methacrylate)/polystyrene composite particles with the solvent-absorbing/solvent-releasing method. Colloid and Polymer Science, 2004, 282, 1192-1197.	1.0	18
131	Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid and Polymer Science, 2003, 281, 214-219.	1.0	46
132	Phase separation in the formation of hollow particles by suspension polymerization for divinylbenzene/toluene droplets dissolving polystyrene. Colloid and Polymer Science, 2003, 281, 123-129.	1.0	44
133	Thermodynamic analysis of the morphology of monomer-adsorbed, cross-linked polymer particles prepared by the dynamic swelling method and seeded polymerization. Colloid and Polymer Science, 2003, 281, 246-252.	1.0	29
134	Size effect of monomer droplets on the production of hollow polymer particles by suspension polymerization. Colloid and Polymer Science, 2003, 281, 302-307.	1.0	26
135	Inclusion of nonionic emulsifier inside polymer particles produced by emulsion polymerization. Colloid and Polymer Science, 2003, 281, 182-186.	1.0	21
136	Production of polyacrylonitrile particles by precipitation polymerization in supercritical carbon dioxide. Colloid and Polymer Science, 2003, 281, 964-972.	1.0	27
137	Influence of viscosity within polymerizing particle on the morphology of micron-sized, monodisperse composite polymer particles produced by seeded polymerization for the dispersion of highly monomer-swollen polymer particles. Colloid and Polymer Science, 2003, 281, 1002-1005.	1.0	8
138	Influence of nonionic emulsifier included inside carboxylated polymer particles on the formation of multihollow structure by the alkali/cooling method. Colloid and Polymer Science, 2003, 282, 193-197.	1.0	25
139	Effect of graft polymer on the formation of micron-sized, monodisperse, "onion-like" alternately multilayered poly(methyl methacrylate)/polystyrene composite particles by reconstruction of morphology with the solvent-absorbing/releasing method. Colloid and Polymer Science, 2003, 281, 945-950.	1.0	22
140	Preparation of multihollow polymer particles by the alkali/cooling method under partial	0.4	11
141	Variation of the morphology of a carboxylated polymer film by alkali treatment. Colloid and Polymer Science, 2002, 280, 574-578.	1.0	12
142	Estimation of the adsorption state of nonionic emulsifier molecules onto styrene-methacrylic acid copolymer particles by in situ 1 H NMR measurements. Colloid and Polymer Science, 2002, 280, 1053-1056.	1.0	3
143	Preparation of micron-sized, monodisperse poly(methyl methacrylate)/polystyrene composite particles having a large number of dents on their surfaces by seeded dispersion polymerization in the presence of decalin. Colloid and Polymer Science, 2002, 280, 1057-1061.	1.0	53
144	Heterogeneity among multihollow polymer particles prepared by the alkali/cooling method under partial neutralization conditions. Colloid and Polymer Science, 2002, 280, 822-827.	1.0	8

#	Article	IF	CITATIONS
145	Production of polydivinylbiphenyl particles by precipitation polymerization in supercritical carbon dioxide. Colloid and Polymer Science, 2002, 280, 1084-1090.	1.0	12
146	Formation mechanism of a multihollow structure within submicron-sized styrene/methacrylic acid copolymer particles by the stepwise acid/alkali method. Colloid and Polymer Science, 2002, 280, 303-309.	1.0	17
147	Production of hollow polymer particles by suspension polymerizations for divinylbenzene/toluene 321-328.	0.4	11
148	The acceleration behavior of decomposition of potassium persulfate in the dispersions of polystyrene particles stabilized with nonionic emulsifier. Studies in Surface Science and Catalysis, 2001, , 347-350.	1.5	1
149	Morphology of micron-sized, monomer-adsorbed, crosslinked polymer particles having snowmanlike shapes prepared by the dynamic swelling method. Journal of Polymer Science Part A, 2001, 39, 3106-3111.	2.5	31
150	Production of micron-sized monodispersed anomalous polymer particles having red blood corpuscle shape. Macromolecular Symposia, 2000, 150, 201-210.	0.4	32
151	Thermodynamics for preparation of micron-sized, monodispersed, monomer-"adsorbedâ€polymer particles having"snowmanâ€shape by utilizing the dynamic swelling method and the seeded polymerization. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1999, 75, 195-200.	1.6	6
152	Production of micronâ€sized monodispersed crossâ€linked polymer particles having hollow structure. Macromolecular Symposia, 1996, 101, 509-516.	0.4	37
153	Morphologies of micronâ€sized monodispersed composite polymer particles having crosslinked structures produced by seeded polymerizations. Macromolecular Symposia, 1995, 92, 83-95.	0.4	6
154	Thermal shock test of IC packages sealed with epoxy molding compounds filled with irregular-shaped silica particles. Journal of Applied Polymer Science, 1993, 49, 331-336.	1.3	7
155	Production of micron-size monodisperse polymer particles by seeded polymerization utilizing dynamic swelling method with cooling process. Polymer International, 1993, 30, 469-474.	1.6	77
156	Effect of particle size on mechanical properties of epoxy resin filled with angular-shaped silica. Journal of Applied Polymer Science, 1992, 44, 151-158.	1.3	98
157	Preferential adsorption of bovine fibrinogen dimer onto polymer microspheres having heterogeneous surfaces consisting of hydrophobic and hydrophilic parts. Journal of Applied Polymer Science, 1992, 45, 245-251.	1.3	9
158	Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. Journal of Applied Polymer Science, 1992, 45, 1281-1289.	1.3	220
159	Preparation of asymmetric film by blending two kinds of polymer emulsions having greatly different storage stabilities. Journal of Applied Polymer Science, 1991, 42, 2205-2208.	1.3	12
160	Internal stress of epoxy resin modified with acrylic polymers having crosslinks produced byin situ UV radiation polymerization. Journal of Materials Science, 1990, 25, 2711-2716.	1.7	12
161	Internal stress of epoxy resin modified with acrylic polymers produced by in situ UV radiation polymerization. Journal of Applied Polymer Science, 1990, 39, 1045-1060.	1.3	29
162	Control of particle morphology in emulsion polymerization. Makromolekulare Chemie Macromolecular Symposia, 1990, 35-36, 307-325.	0.6	90

#	Article	IF	CITATIONS
163	The decomposition of potassium persulphate used as initiator in emulsion polymerization. Makromolekulare Chemie Macromolecular Symposia, 1990, 31, 143-156.	0.6	31
164	Preparation of carboxylated polymer emulsion particles in which carboxyl groups are predominantly localized at surface layer by using the seeded emulsion polymerization technique. Journal of Applied Polymer Science, 1987, 33, 1511-1516.	1.3	41
165	Adsorption of trypsin onto poly(2-hydroxyethyl methacrylate)/polystyrene composite microspheres and its enzymatic activity. Journal of Applied Polymer Science, 1987, 34, 1439-1446.	1.3	30
166	Morphology of composite polymer emulsion particles consisting of two kinds of polymers between which ionic bonding intermolecular interaction operates. Journal of Applied Polymer Science, 1986, 31, 1075-1082.	1.3	25
167	Internal stress of epoxy resin modified with acrylic core-shell particles prepared by seeded emulsion polymerization. Journal of Applied Polymer Science, 1986, 32, 4865-4871.	1.3	100
168	Production of anomalous particles in the process of emulsifier-free emulsion copolymerization of styrene and 2-hydroxyethyl methacrylate. Journal of Polymer Science Part A, 1986, 24, 3109-3116.	2.5	54
169	Immobilization of trypsin onto microspheres of styrene-glycidyl methacrylate copolymer and its carboxylated derivative Kobunshi Ronbunshu, 1985, 42, 829-833.	0.2	5
170	Studies on suspension and emulsion. LX. Composite polymer emulsion film with temperature-sensitive properties. Journal of Applied Polymer Science, 1983, 28, 383-390.	1.3	29
171	Title is missing!. Kobunshi Ronbunshu, 1983, 40, 707-712.	0.2	11
171 172	Title is missing!. Kobunshi Ronbunshu, 1983, 40, 707-712. é«~å^†åð,¨āfžāf«ã,·āf§āf³ç²'åèj¨é¢ã,ã®æœ‰æ©Ÿæ¶²ä½″ã«ã,ˆã,‹ã,«ãf«ãfœã,ã,·ãf«åŸºã®å在化. Kobunsh		
172	é«~å^†åã,~マルã,∙ョン粒åèj¨é¢ã,ã®æœ‰æ©Ÿæ¶²ä¼2"ã«ã,^ã,«ãƒ«ãƒœã,ã,•ル基ã®å在化. Kobunsh Studies on suspension and emulsion. LIV. Shrinkage of polymer emulsion film having asymmetric	ii Roonbuns	hu,ສ982, 39,
172 173	é«~å^†åð, ~ãfžãf «ã, ∙ãf§ãf ³ç²'åè¡ ~é¢ã,ã®æœ‰æ ©Ÿæ¶²ä½ ~ã «ã, ~ã, «ãf «ãf œã,ã, •ãf «åŸ°ã®ååœ ~化. Kobunsh Studies on suspension and emulsion. LIV. Shrinkage of polymer emulsion film having asymmetric porous structure. Journal of Applied Polymer Science, 1982, 27, 3185-3189. Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in	ii Roonbuns 1.3	hu,ຟ 982, 39, 1
172 173 174	é«~å^†åã, ~ãfžãf «ã, ~ãf§ãf 3ç²'åè; ~é¢ã,ã®æœ‰æ©Ÿæ¶²ä½ "ã «ã, ~ã, «ãf «ãf œã,ã, ~ãf «åŸºã®ååœ "化. Kobunsh Studies on suspension and emulsion. LIV. Shrinkage of polymer emulsion film having asymmetric porous structure. Journal of Applied Polymer Science, 1982, 27, 3185-3189. Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in acetone– water. Journal of Applied Polymer Science, 1981, 26, 1675-1679.	ii Roonbuns 1.3 1.3	hu,ຟ 982, 39, 1 38
172 173 174 175	 é«ʿåʿ†åê,ʿʿãfžãf«ã,‑ãf§ãf³ç²'åè;ʿʿé¢ã,ã®æœ‰æ©Ÿæ¶²ä¼2"ã«ã,ʿã,«ãf«ãfœã,ã,‑ãf«åŸªã®åêœʿ化. Kobunsh Studies on suspension and emulsion. LIV. Shrinkage of polymer emulsion film having asymmetric porous structure. Journal of Applied Polymer Science, 1982, 27, 3185-3189. Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in acetone–water. Journal of Applied Polymer Science, 1981, 26, 1675-1679. Asymmetric porous emulsion film. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 1-8. Studies on suspension and emulsion. XXXV. Effect of epoxy groups at the surface layer of ethyl acrylate–glycidyl methacrylate copolymer emulsion particles on its crosslinking reactivity. Journal 	ii Rombuns 1.3 1.3 0.8	hu,a1982, 39, 1 38 36
172 173 174 175 176	 é«~å^†åä, "äfžäf «ä, af§äf³ç²'åè; "é¢ä,䮿œ‰æ©Ÿæ¶²ä¹/2"ä «ä, "ä, «ä, «äf «äf œä,ä, af «åŸ^eä®ååœ "化. Kobunsh Studies on suspension and emulsion. LIV. Shrinkage of polymer emulsion film having asymmetric porous structure. Journal of Applied Polymer Science, 1982, 27, 3185-3189. Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in acetone– water. Journal of Applied Polymer Science, 1981, 26, 1675-1679. Asymmetric porous emulsion film. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 1-8. Studies on suspension and emulsion. XXXV. Effect of epoxy groups at the surface layer of ethyl acrylate– glycidyl methacrylate copolymer emulsion particles on its crosslinking reactivity. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18, 2451-2459. Estimation of morphology of composite polymer emulsion particles by the soap titration method. 	ii Roonbuns 1.3 1.3 0.8 0.8 0.8	hu, 1 382, 39, 1 38 36 33 121

0.2 29

#	Article	IF	CITATIONS
181	Seed乳北é‡å•ã,¨ãfžãƒ«ã,,ãf§ãf³ç²'åä,ã§ã®ç•°ç¨®ãfãfªãfžãf¼ã®ç•°ç›,生æ^œŒ™å«. Kobunshi Ronbunshu	i, 19 7.6 , 33	3, 5 751 -583.

182 ç,,¡ä¹³化å‰äfãfªã,¢ã,¯ãfªãf«é...,ã,¨ãfãf«ã,¨ãfžãf«ã,,ãf§ãf³ã₽機械çš,,ãŠã,ˆã³å‡çµå®‰å®šæ€§. KobunshiRanbunshun 1975, 32

183	Emulsion iodine transfer polymerization of nearly uniform submicrometerâ $\in\!$	1	.6	4	
-----	--	---	----	---	--