
Taku Nishijo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hapten sensitization to vaginal mucosa induces less recruitment of dendritic cells accompanying TGFâ€Î²â€expressing CD206 ⁺ cells compared with skin. Immunity, Inflammation and Disease, 2022, 10, e605.	2.7	3
2	Implementation of a dermal sensitization threshold (DST) concept for risk assessment: structure-based DST and <i>inÂvitro</i> data-based DST. Critical Reviews in Toxicology, 2022, , 1-15.	3.9	3
3	Application of the dermal sensitization threshold concept to chemicals classified as high potency category for skin sensitization assessment of ingredients for consumer products. Regulatory Toxicology and Pharmacology, 2020, 117, 104732.	2.7	13
4	Adjustment of a no expected sensitization induction level derived from Bayesian network integrated testing strategy for skin sensitization risk assessment. Journal of Toxicological Sciences, 2020, 45, 57-67.	1.5	1
5	Differential susceptibility between skin and vaginal mucosa in sensitization phase of allergic contact dermatitis in mice. Immunity, Inflammation and Disease, 2020, 8, 629-637.	2.7	4
6	The dermal sensitization threshold (DST) approach for mixtures evaluated as negative in <i>in vitro</i> test methods; mixture DST. Journal of Toxicological Sciences, 2019, 44, 23-34.	1.5	6
7	Sensitivity of KeratinoSens TM and h-CLAT for detecting minute amounts of sensitizers to evaluate botanical extract. Journal of Toxicological Sciences, 2019, 44, 13-21.	1.5	12
8	Binary test battery with KeratinoSensâ,,¢ and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction. Regulatory Toxicology and Pharmacology, 2017, 88, 118-124.	2.7	37
9	Densified Electrochemical Sensors Based on Local Redox Cycling between Vertically Separated Electrodes in Substrate Generation/Chip Collection and Extended Feedback Modes. Analytical Chemistry, 2014, 86, 4016-4023.	6.5	33
10	Noninvasive Measurement of Alkaline Phosphatase Activity in Embryoid Bodies and Coculture Spheroids with Scanning Electrochemical Microscopy. Analytical Chemistry, 2013, 85, 9647-9654.	6.5	33
11	Noninvasive measurement of respiratory activity of mouse embryoid bodies and its correlation with mRNA levels of undifferentiation/differentiation markers. Molecular BioSystems, 2013, 9, 2701.	2.9	15
12	LSI-based amperometric sensor for real-time monitoring of embryoid bodies. Biosensors and Bioelectronics, 2013, 48, 12-18.	10.1	45
13	Electrochemical Device with Interdigitated Ring Array Electrodes for Investigating the Relationship between Cardiomyocyte Differentiation from Embryonic Stem Cells and Alkaline Phosphatase Activity. Electrochemistry, 2013, 81, 682-687.	1.4	16
14	Comprehensive electrochemical imaging with local redox cycling-based electrochemical chip device for evaluation of three-dimensional culture cells. , 2012, , .		0
15	Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device. Chemical Communications, 2012, 48, 8505.	4.1	24
16	Local Redoxâ€Cyclingâ€Based Electrochemical Chip Device with Deep Microwells for Evaluation of Embryoid Bodies. Angewandte Chemie - International Edition, 2012, 51, 6648-6652.	13.8	66