List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7750111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reassortant G3P[12] rotavirus A strain associated with severe enteritis in donkeys (<i>Equus) Tj ETQq1 1 0.7</i>	84314 rgB ⁻	「/Overlock 10
2	Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virology Journal, 2022, 19, 12.	1.4	17
3	Molecular characterization of the gastrointestinal eukaryotic virome in elderly people in Belem, Para, Brazil. Infection, Genetics and Evolution, 2022, 99, 105241.	1.0	1
4	The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114619119.	3.3	30
5	The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. MSystems, 2022, 7, e0007222.	1.7	7
6	Metagenomics in Virology. , 2021, , 133-140.		23
7	Molecular characterization of group A rotavirus strains detected in alpacas (Vicugna pacos) from Peru. Journal of General Virology, 2021, 102, .	1.3	2
8	ITN—VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics. Viruses, 2021, 13, 766.	1.5	5
9	Establishment of <i>Culex modestus</i> in Belgium and a Glance into the Virome of Belgian Mosquito Species. MSphere, 2021, 6, .	1.3	19
10	Whole genome analysis of Aichivirus A, isolated from a child, suffering from gastroenteritis, in Pakistan. Virus Research, 2021, 299, 198437.	1.1	2
11	Assessing <i>In Vitro</i> Resistance Development in Enterovirus A71 in the Context of Combination Antiviral Treatment. ACS Infectious Diseases, 2021, 7, 2801-2806.	1.8	6
12	High Prevalence of Coinfecting Enteropathogens in Suspected Rotavirus Vaccine Breakthrough Cases. Journal of Clinical Microbiology, 2021, 59, e0123621.	1.8	9
13	At Least Seven Distinct Rotavirus Genotype Constellations in Bats with Evidence of Reassortment and Zoonotic Transmissions. MBio, 2021, 12, .	1.8	31
14	A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature, 2021, 590, 320-325.	13.7	148
15	Discovery of a Novel Class of Norovirus Inhibitors with High Barrier of Resistance. Pharmaceuticals, 2021, 14, 1006.	1.7	0
16	A Previously Undescribed Highly Prevalent Phage Identified in a Danish Enteric Virome Catalog. MSystems, 2021, 6, e0038221.	1.7	22
17	Successional Stages in Infant Gut Microbiota Maturation. MBio, 2021, 12, e0185721.	1.8	48
18	Rotavirus NSP1 Contributes to Intestinal Viral Replication, Pathogenesis, and Transmission. MBio, 2021, 12, e0320821.	1.8	10

#	Article	IF	CITATIONS
19	Phylogenetic analysis of open reading frame of 11 gene segments of novel humanâ€bovine reassortant RVA G6P[1] strain in Pakistan. Journal of Medical Virology, 2020, 92, 3179-3186.	2.5	1
20	STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nature Communications, 2020, 11, 5838.	5.8	225
21	Best Practices for Successfully Writing and Publishing a Genome Announcement in <i>Microbiology Resource Announcements</i> . Microbiology Resource Announcements, 2020, 9, .	0.3	Ο
22	Metagenomic Approach with the NetoVIR Enrichment Protocol Reveals Virus Diversity within Ethiopian Honey Bees (Apis mellifera simensis). Viruses, 2020, 12, 1218.	1.5	16
23	Novel genome sequences of cell-fusing agent virus allow comparison of virus phylogeny with the genetic structure of Aedes aegypti populations. Virus Evolution, 2020, 6, veaa018.	2.2	24
24	Honey-bee–associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10511-10519.	3.3	36
25	Exploration of the virome of the European brown shrimp (Crangon crangon). Journal of General Virology, 2020, 101, 651-666.	1.3	13
26	Stability of the Virome in Lab- and Field-Collected Aedes albopictus Mosquitoes across Different Developmental Stages and Possible Core Viruses in the Publicly Available Virome Data of <i>Aedes</i> Mosquitoes. MSystems, 2020, 5, .	1.7	40
27	Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015-2016. PLoS ONE, 2019, 14, e0220387.	1.1	30
28	What is (not) known about the dynamics of the human gut virome in health and disease. Current Opinion in Virology, 2019, 37, 52-57.	2.6	47
29	Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome, 2019, 7, 121.	4.9	109
30	A robust human norovirus replication model in zebrafish larvae. PLoS Pathogens, 2019, 15, e1008009.	2.1	112
31	Gut Virome Analysis of Cameroonians Reveals High Diversity of Enteric Viruses, Including Potential Interspecies Transmitted Viruses. MSphere, 2019, 4, .	1.3	57
32	Evidence of zoonotic transmission of VP6 and NSP4 genes into human species A rotaviruses isolated in Pakistan in 2010. Archives of Virology, 2019, 164, 1781-1791.	0.9	5
33	G1P[8] Rotavirus in children with severe diarrhea in the post-vaccine introduction era in Brazil: Evidence of reassortments and structural modifications of the antigenic VP7 and VP4 regions. Infection, Genetics and Evolution, 2019, 69, 255-266.	1.0	12
34	Whole Genome Analysis of Selected Human Group A Rotavirus Strains Revealed Evolution of DS-1-Like Single- and Double-Gene Reassortant Rotavirus Strains in Pakistan During 2015–2016. Frontiers in Microbiology, 2019, 10, 2641.	1.5	8
35	The Role of the Virome in the Gut-Liver Axis. , 2019, , 121-131.		0
36	Complete coding sequence of a novel picorna-like virus in a blackbird infected with Usutu virus. Archives of Virology, 2018, 163, 1701-1703.	0.9	4

#	Article	IF	CITATIONS
37	Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut, 2018, 67, 1558-1559.	6.1	46
38	Use of Next-Generation Sequencing for Diagnosis of West Nile Virus Infection in Patient Returning to Belgium from Hungary. Emerging Infectious Diseases, 2018, 24, 2380-2382.	2.0	14
39	Host switching pathogens, infectious outbreaks and zoonosis: A Marie SkÅ,odowska-Curie innovative training network (HONOURs). Virus Research, 2018, 257, 120-124.	1.1	2
40	Nanopore sequencing as a revolutionary diagnostic tool for porcine viral enteric disease complexes identifies porcine kobuvirus as an important enteric virus. Scientific Reports, 2018, 8, 9830.	1.6	59
41	Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code. Virus Evolution, 2018, 4, vey008.	2.2	90
42	NetoVIR: Modular Approach to Customize Sample Preparation Procedures for Viral Metagenomics. Methods in Molecular Biology, 2018, 1838, 85-95.	0.4	33
43	Viral gut metagenomics of sympatric wild and domestic canids, and monitoring of viruses: Insights from an endangered wolf population. Ecology and Evolution, 2017, 7, 4135-4146.	0.8	28
44	Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon. Emerging Microbes and Infections, 2017, 6, 1-7.	3.0	44
45	Highly diverse population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genomics, 2017, 18, 249.	1.2	42
46	Group A Rotaviruses in Chinese Bats: Genetic Composition, Serology, and Evidence for Bat-to-Human Transmission and Reassortment. Journal of Virology, 2017, 91, .	1.5	28
47	Identification of an enterovirus recombinant with a torovirus-like gene insertion during a diarrhea outbreak in fattening pigs. Virus Evolution, 2017, 3, vex024.	2.2	30
48	A18 Random amplification with next-generation sequencing to cover HIV and HCV full-length genomes. Virus Evolution, 2017, 3, .	2.2	1
49	Comparative analysis of the Rotarixâ,,¢ vaccine strain and G1P[8] rotaviruses detected before and after vaccine introduction in Belgium. PeerJ, 2017, 5, e2733.	0.9	16
50	Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures. Scientific Reports, 2016, 6, 20022.	1.6	35
51	A single bat species in Cameroon harbors multiple highly divergent papillomaviruses in stool identified by metagenomics analysis. Virology Reports, 2016, 6, 74-80.	0.4	8
52	Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide. Journal of Infectious Diseases, 2016, 214, 1039-1049.	1.9	18
53	Whole genomic characterization of Korean porcine G8P[7] reassortant rotaviruses. Archives of Virology, 2016, 161, 2835-2841.	0.9	1
54	Reassortment among picobirnaviruses found in wolves. Archives of Virology, 2016, 161, 2859-2862.	0.9	24

#	Article	IF	CITATIONS
55	Emergence of human G2P[4] rotaviruses containing animal derived gene segments in the post-vaccine era. Scientific Reports, 2016, 6, 36841.	1.6	11
56	Novel highly divergent reassortant bat rotaviruses in Cameroon, without evidence of zoonosis. Scientific Reports, 2016, 6, 34209.	1.6	44
57	Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. Infection, Genetics and Evolution, 2016, 43, 135-145.	1.0	25
58	Molecular detection of bovine Noroviruses in Argentinean dairy calves: Circulation of a tentative new genotype. Infection, Genetics and Evolution, 2016, 40, 144-150.	1.0	20
59	Complete genome analyses of the first porcine rotavirus group H identified from a South African pig does not provide evidence for recent interspecies transmission events. Infection, Genetics and Evolution, 2016, 38, 1-7.	1.0	13
60	Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus Research, 2016, 213, 172-183.	1.1	32
61	In-season and out-of-season variation of rotavirus genotype distribution and age of infection across 12 European countries before the introduction of routine vaccination, 2007/08 to 2012/13. Eurosurveillance, 2016, 21, .	3.9	28
62	Did Large-Scale Vaccination Drive Changes in the Circulating Rotavirus Population in Belgium?. Scientific Reports, 2015, 5, 18585.	1.6	36
63	Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Scientific Reports, 2015, 5, 16532.	1.6	277
64	Fecal virome analysis of three carnivores reveals a novel nodavirus and multiple gemycircularviruses. Virology Journal, 2015, 12, 79.	1.4	29
65	Genetic Characterization of the Belgian Nephropathogenic Infectious Bronchitis Virus (NIBV) Reference Strain B1648. Viruses, 2015, 7, 4488-4506.	1.5	32
66	Complete Genome Sequence of a Porcine Epidemic Diarrhea Virus from a Novel Outbreak in Belgium, January 2015. Genome Announcements, 2015, 3, .	0.8	70
67	Genetic diversity of the VP7, VP4 and VP6 genes of Korean porcine group C rotaviruses. Veterinary Microbiology, 2015, 176, 61-69.	0.8	24
68	Molecular characterization of equine rotaviruses isolated in Europe in 2013: Implications for vaccination. Veterinary Microbiology, 2015, 176, 179-185.	0.8	16
69	Genetic diversity in three bovine-like human G8P[14] and G10P[14] rotaviruses suggests independent interspecies transmission events. Journal of General Virology, 2015, 96, 1161-1168.	1.3	34
70	Complete Genome Analysis of a Rabbit Rotavirus Causing Gastroenteritis in a Human Infant. Viruses, 2015, 7, 844-856.	1.5	21
71	Emerging OP354-Like P[8] Rotaviruses Have Rapidly Dispersed from Asia to Other Continents. Molecular Biology and Evolution, 2015, 32, 2060-2071.	3.5	27
72	Genome-Wide Evolutionary Analyses of G1P[8] Strains Isolated Before and After Rotavirus Vaccine Introduction. Genome Biology and Evolution, 2015, 7, 2473-2483.	1.1	43

#	Article	IF	CITATIONS
73	Complete Genome Characterization of Recent and Ancient Belgian Pig Group A Rotaviruses and Assessment of Their Evolutionary Relationship with Human Rotaviruses. Journal of Virology, 2015, 89, 1043-1057.	1.5	46
74	Comparative analysis of pentavalent rotavirus vaccine strains and G8 rotaviruses identified during vaccine trial in Africa. Scientific Reports, 2015, 5, 14658.	1.6	30
75	Canine rotavirus C strain detected in Hungary shows marked genotype diversity. Journal of General Virology, 2015, 96, 3059-3071.	1.3	20
76	Rotavirus Surveillance in Kisangani, the Democratic Republic of the Congo, Reveals a High Number of Unusual Genotypes and Gene Segments of Animal Origin in Non-Vaccinated Symptomatic Children. PLoS ONE, 2014, 9, e100953.	1.1	43
77	Widespread Rotavirus H in Commercially Raised Pigs, United States. Emerging Infectious Diseases, 2014, 20, 1203-1206.	2.0	48
78	Complete Genome Sequence of Equid Herpesvirus 3. Genome Announcements, 2014, 2, .	0.8	12
79	Differences in lineage replacement dynamics of G1 and G2 rotavirus strains versus G9 strain over a period of 22years in Bangladesh. Infection, Genetics and Evolution, 2014, 28, 214-222.	1.0	16
80	Prevalence and genomic characterization of G2P[4] group A rotavirus strains during monovalent vaccine introduction in Brazil. Infection, Genetics and Evolution, 2014, 28, 486-494.	1.0	26
81	The first caprine rotavirus detected in Argentina displays genomic features resembling virus strains infecting members of the Bovidae and Camelidae. Veterinary Microbiology, 2014, 171, 189-197.	0.8	22
82	Complete genomic sequence analyses of the first group A giraffe rotavirus reveals close evolutionary relationship with rotaviruses infecting other members of the Artiodactyla. Veterinary Microbiology, 2014, 170, 151-156.	0.8	14
83	Higher proportion of G2P[4] rotaviruses in vaccinated hospitalized cases compared with unvaccinated hospitalized cases, despite high vaccine effectiveness against heterotypic G2P[4] rotaviruses. Clinical Microbiology and Infection, 2014, 20, O702-O710.	2.8	50
84	Distinct evolutionary origins of G12P[8] and G12P[9] group A rotavirus strains circulating in Brazil. Infection, Genetics and Evolution, 2014, 28, 385-388.	1.0	25
85	Molecular analysis of non structural rotavirus group A enterotoxin gene of bovine origin from India. Infection, Genetics and Evolution, 2014, 25, 20-27.	1.0	10
86	Evolution of DS-1-like human G2P[4] rotaviruses assessed by complete genome analyses. Journal of General Virology, 2014, 95, 91-109.	1.3	44
87	The complete genome sequence of a G3P[10] Chinese bat rotavirus suggests multiple bat rotavirus inter-host species transmission events. Infection, Genetics and Evolution, 2014, 28, 1-4.	1.0	29
88	Enteric viral infection in human and animal. VirusDisease, 2014, 25, 145-146.	1.0	3
89	Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples. Journal of Virological Methods, 2014, 209, 30-34.	1.0	94
90	Molecular epidemiology of Korean porcine sapeloviruses. Archives of Virology, 2014, 159, 1175-1180.	0.9	16

#	Article	IF	CITATIONS
91	Porcine group a rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms. Veterinary Microbiology, 2014, 172, 23-34.	0.8	28
92	Sequence and structural analyses of NSP4 proteins from human group A rotavirus strains detected in Tunisia. Pathologie Et Biologie, 2014, 62, 146-151.	2.2	3
93	Comparison of pathogenicities and nucleotide changes between porcine and bovine reassortant rotavirus strains possessing the same genotype constellation in piglets and calves. Veterinary Microbiology, 2014, 172, 51-62.	0.8	13
94	A decade of G3P[8] and G9P[8] rotaviruses in Brazil: Epidemiology and evolutionary analyses. Infection, Genetics and Evolution, 2014, 28, 389-397.	1.0	6
95	VP6 genetic diversity, reassortment, intragenic recombination and classification of rotavirus B in American and Japanese pigs. Veterinary Microbiology, 2014, 172, 359-366.	0.8	26
96	Review of group A rotavirus strains reported in swine and cattle. Veterinary Microbiology, 2013, 165, 190-199.	0.8	195
97	Characterization of human rotaviruses circulating in Iraq in 2008: Atypical G8 and high prevalence of P[6] strains. Infection, Genetics and Evolution, 2013, 16, 212-217.	1.0	18
98	Evaluation of a reverse line blot assay for genotyping common human rotaviruses. Journal of Virological Methods, 2013, 193, 597-602.	1.0	0
99	High incidence of reassortant G9P[4] rotavirus strain in Bangladesh: Fully heterotypic from vaccine strains. Journal of Clinical Virology, 2013, 58, 755-756.	1.6	16
100	Global distribution of group A rotavirus strains in horses: A systematic review. Vaccine, 2013, 31, 5627-5633.	1.7	39
101	Epidemiology and genetic diversity of human astrovirus infection among hospitalized patients with acute diarrhea in Bangladesh from 2010 to 2012. Journal of Clinical Virology, 2013, 58, 612-618.	1.6	23
102	Phylogenetic analysis of G1P[6] group A rotavirus strains detected in Northeast Brazilian children fully vaccinated with Rotarixâ,,¢. Infection, Genetics and Evolution, 2013, 19, 395-402.	1.0	13
103	Identification, phylogenetic analysis and classification of porcine group C rotavirus VP7 sequences from the United States and Canada. Virology, 2013, 446, 189-198.	1.1	71
104	Different virulence of porcine and porcine-like bovine rotavirus strains with genetically nearly identical genomes in piglets and calves. Veterinary Research, 2013, 44, 88.	1.1	17
105	Equine G3P[3] rotavirus strain E3198 related to simian RRV and feline/canine-like rotaviruses based on complete genome analyses. Veterinary Microbiology, 2013, 161, 239-246.	0.8	37
106	Discovery and molecular characterization of a group A rotavirus strain detected in an Argentinean vicuña (Vicugna vicugna). Veterinary Microbiology, 2013, 161, 247-254.	0.8	30
107	Novel intergenotype human norovirus recombinant GII.16/GII.3 in Bangladesh. Infection, Genetics and Evolution, 2013, 20, 325-329.	1.0	17
108	Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15year period. Infection, Genetics and Evolution, 2013, 19, 71-80.	1.0	60

#	Article	IF	CITATIONS
109	Rabbit colony infected with a bovine-like G6P[11] rotavirus strain. Veterinary Microbiology, 2013, 166, 154-164.	0.8	27
110	Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds. Infection, Genetics and Evolution, 2013, 18, 18-30.	1.0	36
111	Complete genetic characterization of human G2P[6] and G3P[6] rotavirus strains. Infection, Genetics and Evolution, 2013, 13, 27-35.	1.0	23
112	Genetic characterization of a rare bovine-like human VP4 mono-reassortant G6P[8] rotavirus strain detected from an infant in Bangladesh. Infection, Genetics and Evolution, 2013, 19, 120-126.	1.0	23
113	Pathogenicity of porcine G9P[23] and G9P[7] rotaviruses in piglets. Veterinary Microbiology, 2013, 166, 123-137.	0.8	13
114	Sequence and phylogenetic analyses of human rotavirus strains: Comparison of VP7 and VP8â^— antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. Infection, Genetics and Evolution, 2013, 18, 132-144.	1.0	31
115	Epidemiology and phylogenetic analysis of VP7 and VP4 genes of rotaviruses circulating in Rawalpindi, Pakistan during 2010. Infection, Genetics and Evolution, 2013, 14, 161-168.	1.0	28
116	Genetic diversity of G9P[8] rotavirus strains circulating in Italy in 2007 and 2010 as determined by whole genome sequencing. Infection, Genetics and Evolution, 2013, 16, 426-432.	1.0	20
117	Characterization of a Novel G3P[3] Rotavirus Isolated from a Lesser Horseshoe Bat: a Distant Relative of Feline/Canine Rotaviruses. Journal of Virology, 2013, 87, 12357-12366.	1.5	63
118	Feline Origin of Rotavirus Strain, Tunisia, 2008. Emerging Infectious Diseases, 2013, 19, 630-634.	2.0	19
119	Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. Journal of General Virology, 2012, 93, 866-875.	1.3	56
120	Genotype constellation and evolution of group A rotaviruses infecting humans. Current Opinion in Virology, 2012, 2, 426-433.	2.6	255
121	Genetic Analyses Reveal Differences in the VP7 and VP4 Antigenic Epitopes between Human Rotaviruses Circulating in Belgium and Rotaviruses in Rotarix and RotaTeq. Journal of Clinical Microbiology, 2012, 50, 966-976.	1.8	160
122	Group A rotavirus universal mass vaccination: how and to what extent will selective pressure influence prevalence of rotavirus genotypes?. Expert Review of Vaccines, 2012, 11, 1347-1354.	2.0	55
123	Detection of substantial porcine group B rotavirus genetic diversity in the United States, resulting in a modified classification proposal for G genotypes. Virology, 2012, 433, 85-96.	1.1	74
124	Effectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. BMJ, The, 2012, 345, e4752-e4752.	3.0	124
125	VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Archives of Virology, 2012, 157, 1177-1182.	0.9	344
126	Molecular characterization of the NSP4 gene of human group A rotavirus strains circulating in Tunisia from 2006 to 2008. Infection, Genetics and Evolution, 2012, 12, 997-1004.	1.0	16

#	Article	IF	CITATIONS
127	Full genome characterization of a porcine-like human G9P[6] rotavirus strain isolated from an infant in Belgium. Infection, Genetics and Evolution, 2012, 12, 1492-1500.	1.0	54
128	Full-length genomic analysis of porcine G9P[23] and G9P[7] rotavirus strains isolated from pigs with diarrhea in South Korea. Infection, Genetics and Evolution, 2012, 12, 1427-1435.	1.0	37
129	Reassortment among bovine, porcine and human rotavirus strains results in C8P[7] and G6P[7] strains isolated from cattle in South Korea. Veterinary Microbiology, 2011, 152, 55-66.	0.8	64
130	Intestinal and extra-intestinal pathogenicity of a bovine reassortant rotavirus in calves and piglets. Veterinary Microbiology, 2011, 152, 291-303.	0.8	28
131	Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Archives of Virology, 2011, 156, 1397-1413.	0.9	827
132	Genotypes of rotavirus strains circulating in Amman, Jordan, in 2006/07 and their significance for the potential effectiveness of future rotavirus vaccination. Archives of Virology, 2011, 156, 1543-1550.	0.9	7
133	Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. Infection, Genetics and Evolution, 2011, 11, 1396-1406.	1.0	105
134	Molecular characterization of genotype G6 human rotavirus strains detected in Italy from 1986 to 2009. Infection, Genetics and Evolution, 2011, 11, 1449-1455.	1.0	27
135	Distribution of rotavirus genotypes causing nosocomial and community-acquired acute gastroenteritis at The Children's Hospital of Philadelphia in the new rotavirus vaccine era. Hum Vaccin, 2011, 7, 1118-1123.	2.4	10
136	Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiology and Infection, 2011, 139, 895-909.	1.0	204
137	A feline rotavirus G3P[9] carries traces of multiple reassortment events and resembles rare human G3P[9] rotaviruses. Journal of General Virology, 2011, 92, 1214-1221.	1.3	47
138	Sustained Decline in Cases of Rotavirus Gastroenteritis Presenting to the Children's Hospital of Philadelphia in the New Rotavirus Vaccine Era. Pediatric Infectious Disease Journal, 2010, 29, 699-702.	1.1	22
139	Zoonotic aspects of rotaviruses. Veterinary Microbiology, 2010, 140, 246-255.	0.8	479
140	Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq®. Virology, 2010, 403, 111-127.	1.1	114
141	Complete genomic analysis of a Bangladeshi G1P[8] rotavirus strain detected in 2003 reveals a close evolutionary relationship with contemporary human Wa-like strains. Infection, Genetics and Evolution, 2010, 10, 746-754.	1.0	23
142	Whole genome sequencing and phylogenetic analysis of a zoonotic human G8P[14] rotavirus strain. Infection, Genetics and Evolution, 2010, 10, 1140-1144.	1.0	63
143	Genomic evolution, host-species barrier, reassortment and classification of rotaviruses. Future Virology, 2010, 5, 385-390.	0.9	24
144	Simian Rotaviruses Possess Divergent Gene Constellations That Originated from Interspecies Transmission and Reassortment. Journal of Virology, 2010, 84, 2013-2026.	1.5	60

#	Article	IF	CITATIONS
145	Reassortment of Human Rotavirus Gene Segments into G11 Rotavirus Strains. Emerging Infectious Diseases, 2010, 16, 625-630.	2.0	84
146	Unusual Assortment of Segments in 2 Rare Human Rotavirus Genomes. Emerging Infectious Diseases, 2010, 16, 859-862.	2.0	43
147	Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine, 2010, 28, 7507-7513.	1.7	206
148	Phylodynamic Analyses of Rotavirus Genotypes G9 and G12 Underscore Their Potential for Swift Global Spread. Molecular Biology and Evolution, 2010, 27, 2431-2436.	3.5	253
149	Frequent rearrangement may explain the structural heterogeneity in the 11th genome segment of lapine rotaviruses — Short communication. Acta Veterinaria Hungarica, 2009, 57, 453-461.	0.2	7
150	Are Human P[14] Rotavirus Strains the Result of Interspecies Transmissions from Sheep or Other Ungulates That Belong to the Mammalian Order <i>Artiodactyla</i> ?. Journal of Virology, 2009, 83, 2917-2929.	1.5	202
151	Evolutionary Dynamics of Human Rotaviruses: Balancing Reassortment with Preferred Genome Constellations. PLoS Pathogens, 2009, 5, e1000634.	2.1	178
152	RotaC: A web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiology, 2009, 9, 238.	1.3	365
153	A proposal for new criteria for the classification of hantaviruses, based on S and M segment protein sequences. Infection, Genetics and Evolution, 2009, 9, 813-820.	1.0	71
154	Genetic heterogeneity in human G6P[14] rotavirus strains detected in Hungary suggests independent zoonotic origin. Journal of Infection, 2009, 59, 213-215.	1.7	42
155	Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiology, 2009, 4, 1303-1316.	1.0	280
156	Genomic characterization of a novel group A lamb rotavirus isolated in Zaragoza, Spain. Virus Genes, 2008, 37, 250-265.	0.7	45
157	Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Archives of Virology, 2008, 153, 1621-1629.	0.9	642
158	Emerging G9 rotavirus strains in the northwest of China. Virus Research, 2008, 137, 157-162.	1.1	13
159	Temporal changes of rotavirus strain distribution in a city in the northwest of China, 1996–2005. International Journal of Infectious Diseases, 2008, 12, e11-e17.	1.5	16
160	Full Genome-Based Classification of Rotaviruses Reveals a Common Origin between Human Wa-Like and Porcine Rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. Journal of Virology, 2008, 82, 3204-3219.	1.5	791
161	Two out of the 11 genes of an unusual human G6P[6] rotavirus isolate are of bovine origin. Journal of General Virology, 2008, 89, 2630-2635.	1.3	81
162	Evolutionary History and Global Spread of the Emerging G12 Human Rotaviruses. Journal of Virology, 2007, 81, 2382-2390.	1.5	276

#	Article	IF	CITATIONS
163	Sequence analysis and evolution of group B rotaviruses. Virus Research, 2007, 125, 219-225.	1.1	20
164	Prevalence of G2P[4] and G12P[6] Rotavirus, Bangladesh. Emerging Infectious Diseases, 2007, 13, 18-24.	2.0	161
165	Symptomatic and Subclinical Infection with Rotavirus P[8]G9, Rural Ecuador. Emerging Infectious Diseases, 2007, 13, 574-580.	2.0	21
166	Loop model: Mechanism to explain partial gene duplications in segmented dsRNA viruses. Biochemical and Biophysical Research Communications, 2006, 340, 140-144.	1.0	26
167	G8 Rotavirus Strains Isolated in the Democratic Republic of Congo Belong to the DS-1-Like Genogroup. Journal of Clinical Microbiology, 2006, 44, 1801-1809.	1.8	109
168	Full Genomic Analysis of Human Rotavirus Strain B4106 and Lapine Rotavirus Strain 30/96 Provides Evidence for Interspecies Transmission. Journal of Virology, 2006, 80, 3801-3810.	1.5	206
169	Characterization of a Novel P[25],G11 Human Group A Rotavirus. Journal of Clinical Microbiology, 2005, 43, 3208-3212.	1.8	121
170	Predominance of rotavirus G9 genotype in children hospitalized for rotavirus gastroenteritis in Belgium during 1999–2003. Journal of Clinical Virology, 2005, 33, 1-6.	1.6	80
171	Typing of human rotaviruses: nucleotide mismatches between the VP7 gene and primer are associated with genotyping failure. Virology Journal, 2005, 2, 24.	1.4	34
172	Chromatography Paper Strip Method for Collection, Transportation, and Storage of Rotavirus RNA in Stool Samples. Journal of Clinical Microbiology, 2004, 42, 1605-1608.	1.8	23
173	Human infection with a P[14], G3 lapine rotavirus. Virology, 2004, 325, 11-17.	1.1	29
174	NetoVIR: a reproducible protocol for virome analysis. Protocol Exchange, 0, , .	0.3	8
175	Genome Diversity and Evolution of Rotaviruses. , 0, , 214-241.		2