
Ji-Qing Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphology-engineered highly active and stable Pd/TiO2 catalysts for CO2 hydrogenation into formate. Journal of Catalysis, 2022, 405, 152-163.	6.2	33
2	Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts. Journal of Catalysis, 2022, 405, 333-345.	6.2	39
3	Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. Journal of Catalysis, 2022, 407, 126-140.	6.2	34
4	Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. Journal of Catalysis, 2022, 407, 104-114.	6.2	36
5	Unraveling the promoting roles of sulfate groups on propane combustion over Pt-SO42â^'/ZrO2 catalysts. Journal of Catalysis, 2022, 407, 322-332.	6.2	18
6	Catalytic oxidation of dichloromethane over CrFeO mixed oxides: Improved activity and stability by sulfuric acid treatment. Applied Catalysis A: General, 2022, 636, 118573.	4.3	5
7	Tailoring Co3O4 active species to promote propane combustion over Co3O4/ZSM-5 catalyst. Molecular Catalysis, 2022, 524, 112297.	2.0	3
8	Boosting the deep oxidation of propane over zeolite encapsulated Rh-Mn bimetallic nanoclusters: Elucidating the role of confinement and synergy effects. Journal of Catalysis, 2022, 413, 201-213.	6.2	14
9	Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Journal of Catalysis, 2021, 395, 10-22.	6.2	29
10	Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. Journal of Catalysis, 2021, 397, 116-127.	6.2	63
11	Highly active and water tolerant Pt/MFe2O4 (M = Co and Ni) catalysts for low temperature CO oxidation. Applied Catalysis A: General, 2021, 619, 118142.	4.3	5
12	Continuous hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol at Cu-MoOx interface with a low H2/ester ratio. Journal of Catalysis, 2021, 399, 98-110.	6.2	22
13	Insights into Different Reaction Behaviors of Propane and CO Oxidation over Pt/CeO ₂ and Pt/Nb ₂ O ₅ : The Crucial Roles of Support Properties. Journal of Physical Chemistry C, 2021, 125, 19301-19310.	3.1	21
14	The roles of metal-promoter interface on liquid phase selective hydrogenation of crotonaldehyde over Ir-MoOx/BN catalysts. Applied Catalysis A: General, 2021, 623, 118269.	4.3	7
15	The effects of TiO2 crystal-plane-dependent Ir-TiO interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Chinese Journal of Catalysis, 2021, 42, 1742-1754.	14.0	7
16	Different roles of MoO3 and Nb2O5 promotion in short-chain alkane combustion over Pt/ZrO2 catalysts. Chinese Journal of Catalysis, 2021, 42, 2287-2295.	14.0	24
17	Selective hydrogenation of crotonaldehyde over Ir/BN catalysts: kinetic investigation and Ir particle size effect. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 301-315.	1.7	3
18	The effects of MoO ₃ impregnation order on the catalytic activity for propane combustion over Pt/ZrO ₂ catalysts: the crucial roles of Pt–MoO ₃ interfacial sites density. New Journal of Chemistry, 2021, 45, 14695-14702.	2.8	11

#	Article	IF	CITATIONS
19	The Roles of Precursor-Induced Metal–Support Interaction on the Selective Hydrogenation of Crotonaldehyde over Ir/TiO2 Catalysts. Catalysts, 2021, 11, 1216.	3.5	1
20	CO oxidation over Pt/Cr1.3Fe0.7O3 catalysts: Enhanced activity on single Pt atom by H2O promotion. Journal of Catalysis, 2020, 382, 192-203.	6.2	41
21	Co–Cr–O mixed oxides for low–temperature total oxidation of propane: Structural effects, kinetics, and spectroscopic investigation. Chinese Journal of Catalysis, 2020, 41, 442-453.	14.0	41
22	Total oxidation of propane over Pt-V/SiO2 catalysts: Remarkable enhancement of activity by vanadium promotion. Applied Catalysis A: General, 2020, 590, 117337.	4.3	26
23	The effects of MoOx decoration on the selective hydrogenation of crotonaldehyde over MoOx-promoted Ir/TUD-1 catalysts. Journal of Catalysis, 2020, 381, 222-233.	6.2	29
24	Metal-Free Ceria Catalysis for Selective Hydrogenation of Crotonaldehyde. ACS Catalysis, 2020, 10, 14560-14566.	11.2	64
25	Zinc Oxide Morphologyâ€Dependent Pd/ZnO Catalysis in Baseâ€Free CO ₂ Hydrogenation into Formic Acid. ChemCatChem, 2020, 12, 5540-5547.	3.7	24
26	High-performance CrxFe2-xO3 mixed oxides for catalytic combustion of dichloromethane. Catalysis Communications, 2020, 146, 106126.	3.3	6
27	Morphology-Dependent CO Reduction Kinetics and Surface Copper Species Evolution of Cu ₂ O Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21568-21576.	3.1	20
28	Insights into propane combustion over MoO3 promoted Pt/ZrO2 catalysts: The generation of Pt-MoO3 interface and its promotional role on catalytic activity. Journal of Catalysis, 2020, 391, 80-90.	6.2	58
29	Efficient synthesis of methanol and ethylene glycol <i>via</i> the hydrogenation of CO ₂ -derived ethylene carbonate on Cu/SiO ₂ catalysts with balanced Cu ⁺ –Cu ⁰ sites. Catalysis Science and Technology, 2020, 10, 5149-5162.	4.1	33
30	Deep oxidation of propane over WO3 - promoted Pt/BN catalysts: The critical role of Pt - WO3 interface. Applied Catalysis B: Environmental, 2020, 272, 118858.	20.2	62
31	Effect of Fe promotion on the performance of V2O5/MgF2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Applied Surface Science, 2019, 490, 365-371.	6.1	6
32	Dehydrofluorination of 1, 1, 1, 3, 3-pentafluoropropane over C-AlF3 composite catalysts: Improved catalyst stability by the presence of pre-deposited carbon. Applied Catalysis A: General, 2019, 576, 39-46.	4.3	25
33	Understanding the Role of NbO <i>_x</i> on Pt/Al ₂ O ₃ for Effective Catalytic Propane Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 21945-21952.	3.7	32
34	Kinetic study of selective hydrogenation of crotonaldehyde over Fe-promoted Ir/BN catalysts. Applied Surface Science, 2019, 463, 463-473.	6.1	20
35	Synergistic roles of PtO and Pt2+ species in propane combustion over high-performance Pt/AlF3 catalysts. Applied Surface Science, 2019, 475, 524-531.	6.1	40
36	Highly Active Pt/BN Catalysts for Propane Combustion: The Roles of Support and Reactant-Induced Evolution of Active Sites. ACS Catalysis, 2019, 9, 1472-1481.	11.2	123

#	Article	IF	CITATIONS
37	CO oxidation over supported Pt/CrxFe2-xO3 catalysts and their good tolerance to CO2 and H2O. Applied Catalysis B: Environmental, 2019, 245, 314-324.	20.2	30
38	Enhanced performance of CO oxidation over Pt/CuCrOx catalyst in the presence of CO2 and H2O. Applied Surface Science, 2018, 442, 613-621.	6.1	22
39	Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over fluorinated NiO/Cr 2 O 3 catalysts. Applied Surface Science, 2018, 433, 904-913.	6.1	34
40	Dehydrochlorination of 1, 1, 2-trichloroethane over SiO2-supported alkali and transition metal catalysts: Tunable selectivity controlled by the acid - base properties of the catalysts. Applied Catalysis B: Environmental, 2018, 236, 368-376.	20.2	21
41	High performance V2O5/MgF2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane: Support-induced evolution of new active sites. Journal of Catalysis, 2018, 364, 271-281.	6.2	17
42	Selective hydrogenation of cinnamaldehyde with PtFe /Al2O3@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeO and Pt-Al2O3@SBA-15 interaction. Journal of Catalysis, 2017, 354, 24-36.	6.2	71
43	The most active Cu facet for low-temperature water gas shift reaction. Nature Communications, 2017, 8, 488.	12.8	141
44	Catalytic combustion of dichloromethane over supported CoCr 2 O 4 /TUD-1 catalysts: The effect of CoCr 2 O 4 particle size on the modification of surface properties and the catalytic performance. Applied Surface Science, 2017, 425, 1074-1081.	6.1	15
45	Gas phase propylene epoxidation over Au supported on titanosilicates with different Ti chemical environments. Applied Surface Science, 2017, 393, 11-22.	6.1	27
46	Nano-sized gold particles dispersed on HZSM-5 and SiO 2 substrates for catalytic oxidation of HCHO. Catalysis Today, 2017, 281, 512-519.	4.4	52
47	The effect of microstructural properties of CoCr 2 O 4 spinel oxides on catalytic combustion of dichloromethane. Applied Surface Science, 2016, 369, 58-66.	6.1	23
48	Selective Hydrogenation of Crotonaldehyde over Ir–FeO _{<i>x</i>} /SiO ₂ Catalysts: Enhancement of Reactivity and Stability by Ir–FeO _{<i>x</i>} Interaction. Journal of Physical Chemistry C, 2016, 120, 8663-8673.	3.1	32
49	Effect of structural properties of mesoporous Co3O4 catalysts on methane combustion. Chemical Research in Chinese Universities, 2016, 32, 808-811.	2.6	9
50	Morphological effects of ordered Cr2O3 nanorods and Cr2O3 nanoparticles on fluorination of 2-chloro-1,1,1-trifluoroethane. Journal of Materials Science, 2016, 51, 6488-6496.	3.7	17
51	Great improvement on the selective hydrogenation of crotonaldehyde over CrO _x - and FeO _x -promoted Ir/SiO ₂ catalysts. Catalysis Science and Technology, 2016, 6, 4294-4305.	4.1	20
52	Kinetic and activity study of CO oxidation over CuO–MnOx–CeO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 503-520.	1.7	17
53	Enhanced CO oxidation over potassium-promoted Pt/Al2O3 catalysts: Kinetic and infrared spectroscopic study. Chinese Journal of Catalysis, 2015, 36, 1976-1986.	14.0	13
54	Pd/AlF3 catalysts for catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Chemical Research in Chinese Universities, 2015, 31, 1003-1006.	2.6	15

#	Article	IF	CITATIONS
55	CO and C3H8 total oxidation over Pd catalysts supported on commercial Ce-Zr solid solution: Effects of the calcination temperature and hydrothermal treatment. Chemical Research in Chinese Universities, 2015, 31, 288-293.	2.6	1
56	Highly efficient Mg(OH)Cl/SiO2 catalysts for selective dehydrochlorination of 1,1,2-trichloroethane. Applied Catalysis A: General, 2015, 508, 10-15.	4.3	6
57	Highly active spinel type CoCr2O4 catalysts for dichloromethane oxidation. Applied Catalysis B: Environmental, 2015, 165, 477-486.	20.2	89
58	Amine-modified ordered mesoporous silica: The effect of pore size on CO2 capture performance. Applied Surface Science, 2015, 324, 286-292.	6.1	92
59	Oxygen vacancy promoted CO oxidation over Pt/CeO 2 catalysts: A reaction at Pt–CeO 2 interface. Applied Surface Science, 2014, 314, 725-734.	6.1	190
60	Enhanced activity for catalytic oxidation of 1,2-dichloroethane over Al-substituted LaMnO3 perovskite catalysts. Applied Surface Science, 2014, 307, 178-188.	6.1	43
61	Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts. Journal of Catalysis, 2014, 311, 314-324.	6.2	76
62	Gas-phase epoxidation of 3,3,3-trifluoropropylene over Au/CuTiO2 catalysts with N2O as the oxidant. Journal of Catalysis, 2014, 312, 139-151.	6.2	7
63	Probing different effects of surface MOy and Mn+ species (M=Cu, Ni, Co, Fe) for xMOy/Ce0.9M0.1â^'xO2â^´Î´ catalysts in CO oxidation. Applied Catalysis B: Environmental, 2014, 144, 325-332.	20.2	37
64	Effects of yttrium-doping on the performance of Cr2O3 catalysts for vapor phase fluorination of 1,1,2,3-tetrachloropropene. Journal of Fluorine Chemistry, 2014, 166, 78-83.	1.7	19
65	Effect of reduction temperature on Ru–Ir/ZnO catalyst for selective hydrogenation of crotonaldehyde. Journal of Molecular Catalysis A, 2014, 392, 89-96.	4.8	40
66	The effect of post-processing conditions on aminosilane functionalizaiton of mesocellular silica foam for post-combustion CO2 capture. Fuel, 2014, 123, 66-72.	6.4	37
67	Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Applied Catalysis B: Environmental, 2013, 142-143, 523-532.	20.2	135
68	Kinetic study of CO oxidation over CuO/MO2 (M=Si, Ti and Ce) catalysts. Applied Surface Science, 2013, 287, 124-134.	6.1	38
69	Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde. Applied Surface Science, 2013, 280, 179-185.	6.1	19
70	Stable Ir/SiO2 catalyst for selective hydrogenation of crotonaldehyde. Applied Surface Science, 2013, 270, 388-394.	6.1	38
71	Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO ₂ Capture. Energy & Fuels, 2013, 27, 7673-7680.	5.1	36
72	Co-adsorption of hydrogen and CO on Pt film: AnÂin-situ ATR-IR study combined with DFT calculations. International Journal of Hydrogen Energy, 2013, 38, 13673-13679.	7.1	6

#	Article	IF	CITATIONS
73	Effects of M-promoter (M=Y, Co, La, Zn) on Cr2O3 catalysts for fluorination of perchloroethylene. Journal of Fluorine Chemistry, 2013, 156, 66-72.	1.7	12
74	Comparing the CO oxidation activity of free PdO and Pd2+ ions over PdO-CeO2/SiO2 catalysts. Journal of Molecular Catalysis A, 2013, 374-375, 53-58.	4.8	21
75	Hydrogen Adsorption and Oxidation on Pt Film: An in Situ Real-Time Attenuated Total Reflection Infrared (ATR-IR) Spectroscopic Study. Journal of Physical Chemistry C, 2013, 117, 12537-12543.	3.1	18
76	Characterizations of Ru/ZnO catalysts with different Ru contents for selective hydrogenation of crotonaldehyde. Journal of Industrial and Engineering Chemistry, 2013, 19, 250-255.	5.8	26
77	Cr ₂ O ₃ Catalysts for Fluorination of 2-Chloro-3,3,3-trifluoropropene to 2,3,3,3-Tetrafluoropropene. Industrial & Engineering Chemistry Research, 2013, 52, 3295-3299.	3.7	20
78	Tetraethylenepentamine-Modified Siliceous Mesocellular Foam (MCF) for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 4221-4228.	3.7	120
79	Hydrogen adsorption on high surface area Cr2 O3 materials. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1920-1924.	1.8	3
80	CO ₂ Adsorption and Desorption on MgO/Al ₂ O ₃ : An In Situ Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) Study. Applied Spectroscopy, 2012, 66, 122-127.	2.2	25
81	In Situ Real-Time Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) Study of Hydrogen Adsorption and Desorption on Ir/SiO2 Catalyst. Applied Spectroscopy, 2012, 66, 600-605.	2.2	5
82	Direct propylene epoxidation with H2 and O2 over In modified Au/TS-1 catalysts. Catalysis Communications, 2012, 28, 179-182.	3.3	16
83	Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Applied Catalysis A: General, 2012, 433-434, 236-242.	4.3	37
84	A comparative study on Pt/CeO2 and Pt/ZrO2 catalysts for crotonaldehyde hydrogenation. Journal of Molecular Catalysis A, 2012, 361-362, 52-57.	4.8	19
85	Catalytic oxidation of dichloromethane over Pt/CeO2–Al2O3 catalysts. Applied Catalysis B: Environmental, 2012, 127, 159-166.	20.2	77
86	Characterizations of Ir/TiO2 catalysts with different Ir contents for selective hydrogenation of crotonaldehyde. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 419-434.	1.7	16
87	Effects of Ir content on selective hydrogenation of crotonaldehyde over Ir/ZrO2 catalysts. Catalysis Communications, 2012, 21, 5-8.	3.3	17
88	ldentification of active sites for CO and CH4 oxidation over PdO/Ce1â^xPdxO2â^î^ catalysts. Applied Catalysis B: Environmental, 2012, 119-120, 117-122.	20.2	103
89	CO oxidation over CuO/Ce1â^'xCuxO2â^'δ and Ce1â^'xCuxO2â^´Î´ catalysts: Synergetic effects and kinetic study. Journal of Catalysis, 2012, 289, 199-209.	6.2	192
90	A novel method for the synthesis of well-crystallized β-AlF3 with high surface area derived from γ-Al2O3. Journal of Materials Chemistry, 2011, 21, 8987.	6.7	23

#	Article	IF	CITATIONS
91	UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir, 2011, 27, 3872-3877.	3.5	413
92	Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO ₂ Catalysts. Journal of Physical Chemistry C, 2011, 115, 19789-19796.	3.1	115
93	Study of Defect Sites in Ce _{1–<i>x</i>} M _{<i>x</i>} O _{2â[^]î´} (<i>x</i> = 0.2) Solid Solutions Using Raman Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 7972-7977.	2.5	202
94	Sorption Properties of Ordered Mesoporous Silica for Toluene and Ethyl Acetate. Adsorption Science and Technology, 2011, 29, 405-412.	3.2	4
95	High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Applied Catalysis B: Environmental, 2011, 110, 279-285.	20.2	156
96	Characterization of CrOx/Al2O3 catalysts for dichloromethane oxidation. Catalysis Today, 2011, 175, 598-602.	4.4	62
97	<i>In situ</i> Raman spectroscopy studies on chromium oxide catalyst in an anhydrous hydrogen fluoride atmosphere. Journal of Raman Spectroscopy, 2011, 42, 1095-1099.	2.5	6
98	Fluorination of dichlorodifluoromethane to synthesize tetrafluoromethane over Cr2O3–AlF3 catalyst. Journal of Industrial and Engineering Chemistry, 2011, 17, 615-620.	5.8	15
99	Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation. Materials Letters, 2010, 64, 1638-1640.	2.6	50
100	Effect of Optical Absorbance on the Raman Spectra of Ce _{0.9} Tb _{0.1} O _{2â^'<i>δ</i>} Solid Solution. ChemPhysChem, 2010, 11, 1693-1699.	2.1	13
101	Effects of NaCl on Pt/ZrO2 catalysts for selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2010, 388, 134-140.	4.3	19
102	In situ Raman spectroscopy of phase transformation in CrOx-Y2O3 system at elevated temperatures. Applied Surface Science, 2010, 256, 3586-3591.	6.1	7
103	Highly active CuO/OMS-2 catalysts for low-temperature CO oxidation. Chemical Engineering Journal, 2010, 162, 151-157.	12.7	86
104	Effect of Calcination Temperature on La-Modified Al2O3 Catalysts for Vapor Phase Hydrofluorination of Acetylene to Vinyl Fluoride. Chinese Journal of Chemical Physics, 2010, 23, 89-94.	1.3	4
105	Effect of carbonization temperature on the textural properties of Ce0.8Zr0.2O2 solid solution by an improved citrate sol–gel method. Journal of Alloys and Compounds, 2010, 493, 169-174.	5.5	11
106	Study of Catalytic Activity at the CuOâ^'CeO ₂ Interface for CO Oxidation. Journal of Physical Chemistry C, 2010, 114, 21605-21610.	3.1	190
107	Enhanced reactivity of direct propylene epoxidation with H2 and O2 over Ge-modified Au/TS-1 catalysts. Journal of Catalysis, 2009, 267, 202-206.	6.2	55
108	Vapor phase hydrofluorination of acetylene to vinyl fluoride over La2O3-Al2O3 catalysts. Journal of Fluorine Chemistry, 2009, 130, 528-533.	1.7	7

#	Article	IF	CITATIONS
109	Thermal Stable Pd/Ce0.2Y0.8O2-δ Catalysts for CO and CH4 Oxidation. Catalysis Letters, 2009, 128, 379-384.	2.6	9
110	Deep desulfurization of FCC gasoline by selective adsorption over nanosized zeolite-based adsorbents. Reaction Kinetics and Catalysis Letters, 2009, 97, 1-6.	0.6	3
111	A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts. Journal of Rare Earths, 2009, 27, 418-424.	4.8	76
112	Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation. Journal of Molecular Catalysis A, 2009, 306, 40-47.	4.8	75
113	Effect of phase structure on electrical conductivity of CexGd1â^'xO2â^'î´ solid electrolytes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 101-105.	3.5	9
114	Pd/Ce0.9Cu0.1O1.9-Y2O3 catalysts for catalytic combustion of toluene and ethyl acetate. Journal of Industrial and Engineering Chemistry, 2009, 15, 683-686.	5.8	21
115	Effect of oxygen vacancies on electrical properties of Ce0.8Sm0.1Nd0.1O2â~δ electrolyte: An in situ Raman spectroscopic study. Journal of Power Sources, 2009, 193, 93-98.	7.8	44
116	Effect of composition and promoters in Au/TS-1 catalysts for direct propylene epoxidation using H2 and O2. Catalysis Today, 2009, 147, 186-195.	4.4	95
117	Studies on the oxidation properties of nanopowder CeO2-based solid solution catalysts for model soot combustion. Thermochimica Acta, 2008, 478, 45-50.	2.7	37
118	Oxidation of propane to propylene oxide on gold catalysts. Journal of Catalysis, 2008, 255, 114-126.	6.2	67
119	Direct gas-phase epoxidation of propylene to propylene oxide using air as oxidant on supported gold catalyst. Journal of Natural Gas Chemistry, 2008, 17, 184-190.	1.8	30
120	Enhanced Activity for CO Oxidation over Pr- and Cu-Doped CeO ₂ Catalysts: Effect of Oxygen Vacancies. Journal of Physical Chemistry C, 2008, 112, 15045-15051.	3.1	183
121	Transient Technique for Identification of True Reaction Intermediates:  Hydroperoxide Species in Propylene Epoxidation on Gold/Titanosilicate Catalysts by X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 1115-1123.	3.1	177
122	Comparative Study of CuO Species on CuO/Al2O3, CuO/CeO2-Al2O3 and CuO/La2O-Al2O3 Catalysts for CO Oxidation. Chinese Journal of Chemical Physics, 2007, 20, 582-586.	1.3	21
123	Study of Oxygen Vacancies in Ce _{0.9} Pr _{0.1} O ₂ ₋ _δ Solid Solution by in Situ X-ray Diffraction and in Situ Raman Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 18695-18702.	3.1	200
124	Identification of CuO Species in High Surface Area CuOâ^'CeO ₂ Catalysts and Their Catalytic Activities for CO Oxidation. Journal of Physical Chemistry C, 2007, 111, 12686-12692.	3.1	169
125	Kinetics of propylene epoxidation using H2 and O2 over a gold/mesoporous titanosilicate catalyst. Catalysis Today, 2007, 123, 189-197.	4.4	75
126	Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2: Effect of Au particle size. Journal of Catalysis, 2007, 250, 350-359.	6.2	132

#	Article	IF	CITATIONS
127	Preparation and Catalytic Performance of Pd Monolithic Catalysts Supported by Y2O3 Washcoat. Chinese Journal of Catalysis, 2007, 28, 635-640.	14.0	5
128	In Situ UVâ^'vis and EPR Study on the Formation of Hydroperoxide Species during Direct Gas Phase Propylene Epoxidation over Au/Ti-SiO2Catalyst. Journal of Physical Chemistry B, 2006, 110, 22995-22999.	2.6	140
129	Direct propylene epoxidation over modified Ag/CaCO3 catalysts. Applied Catalysis A: General, 2006, 302, 283-295.	4.3	106
130	TPR and XPS studies of NaCl modified VCe0.2Cu0.8catalysts for direct propylene epoxidation. Reaction Kinetics and Catalysis Letters, 2005, 86, 219-224.	0.6	12
131	Epoxidation of Propylene over Ag-CuCl Catalysts Using Air as the Oxidant. Catalysis Letters, 2003, 86, 43-49.	2.6	43
132	Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15. Chemistry of Materials, 2002, 14, 3413-3421.	6.7	278
133	Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant. Applied Catalysis A: General, 2002, 237, 11-19.	4.3	100
134	Epoxidation of Propylene on NaCl-Modified VCe1-x Cux Oxide Catalysts with Direct Molecular Oxygen as the Oxidant. Journal of Catalysis, 2002, 211, 552-555.	6.2	46
135	TPR study of PdO catalysts supported on CexTi1-xO2 and CexY1-xO1.5+0.5x: effects of hydrogen spillover. Studies in Surface Science and Catalysis, 2001, 138, 61-68.	1.5	10
136	Revealing the Different Roles of Sulfates on Pt/Al2O3 Catalyst for Methane and Propane Combustion. Catalysis Letters, 0, , 1.	2.6	7