Juan R Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749746/publications.pdf

Version: 2024-02-01

361045 174990 2,924 89 20 citations h-index papers

g-index 100 100 100 1697 times ranked docs citations citing authors all docs

52

#	Article	IF	Citations
1	Interpretable Mamdani neuro-fuzzy model through context awareness and linguistic adaptation. Expert Systems With Applications, 2022, 189, 116098.	4.4	11
2	Interval Type-3 Fuzzy Aggregation of Neural Networks for Multiple Time Series Prediction: The Case of Financial Forecasting. Axioms, 2022, 11, 251.	0.9	15
3	Interval type-3 fuzzy aggregators for ensembles of neural networks in COVID-19 time series prediction. Engineering Applications of Artificial Intelligence, 2022, 114, 105110.	4.3	19
4	An approach on the implementation of full batch, online and mini-batch learning on a Mamdani based neuro-fuzzy system with center-of-sets defuzzification: Analysis and evaluation about its functionality, performance, and behavior. PLoS ONE, 2019, 14, e0221369.	1.1	3
5	PSO with Dynamic Adaptation of Parameters for Optimization in Neural Networks with Interval Type-2 Fuzzy Numbers Weights. Axioms, 2019, 8, 14.	0.9	22
6	An approach for parameterized shadowed type-2 fuzzy membership functions applied in control applications. Soft Computing, 2019, 23, 3887-3901.	2.1	50
7	A New Method for Parameterization of General Type-2 Fuzzy Sets. Fuzzy Information and Engineering, 2018, 10, 31-57.	1.0	18
8	Fuzzy Dynamic Parameter Adaptation in the Harmony Search Algorithm for the Optimization of the Ball and Beam Controller. Advances in Operations Research, 2018, 2018, 1-16.	0.2	33
9	Ensemble Neural Network with Type-2 Fuzzy Weights Using Response Integration for Time Series Prediction. Studies in Fuzziness and Soft Computing, 2018, , 175-189.	0.6	2
10	Toward General Type-2 Fuzzy Logic Systems Based on Shadowed Sets. Advances in Intelligent Systems and Computing, 2018, , 131-142.	0.5	3
11	Optimization of Deep Neural Network for Recognition with Human Iris Biometric Measure. Advances in Intelligent Systems and Computing, 2018, , 172-180.	0.5	3
12	An Overview of Granular Computing Using Fuzzy Logic Systems. Studies in Computational Intelligence, 2017, , 19-38.	0.7	6
13	A FPGA-Based Hardware Architecture Approach for Real-Time Fuzzy Edge Detection. Studies in Computational Intelligence, 2017, , 519-540.	0.7	4
14	Choquet Integral and Interval Type-2 Fuzzy Choquet Integral for Edge Detection. Studies in Computational Intelligence, 2017, , 79-97.	0.7	9
15	Fuzzy higher type information granules from an uncertainty measurement. Granular Computing, 2017, 2, 95-103.	4.4	59
16	Experimentation and Results Discussion. SpringerBriefs in Applied Sciences and Technology, 2017, , 37-49.	0.2	0
17	Agent-Based Model for Automaticity Management of Traffic Flows across the Network. Applied Sciences (Switzerland), 2017, 7, 928.	1.3	6
18	Comparison of T-Norms and S-Norms for Interval Type-2 Fuzzy Numbers in Weight Adjustment for Neural Networks. Information (Switzerland), 2017, 8, 114.	1.7	11

#	Article	IF	Citations
19	Hybrid Learning for General Type-2 TSK Fuzzy Logic Systems. Algorithms, 2017, 10, 99.	1.2	17
20	Advances in Granular Computing. SpringerBriefs in Applied Sciences and Technology, 2017, , 19-35.	0.2	1
21	General Type-2 Fuzzy Edge Detection in the Preprocessing of a Face Recognition System. Studies in Computational Intelligence, 2017, , 3-18.	0.7	10
22	Non-singleton Interval Type-2 Fuzzy Systems as Integration Methods in Modular Neural Networks Used Genetic Algorithms to Design. Studies in Computational Intelligence, 2017, , 821-838.	0.7	2
23	Edge Detection Methods and Filters Used on Digital Image Processing. SpringerBriefs in Applied Sciences and Technology, 2017, , 11-16.	0.2	2
24	Generalized Type-2 Fuzzy Edge Detection Applied on a Face Recognition System. SpringerBriefs in Applied Sciences and Technology, 2017, , 37-41.	0.2	2
25	Experimentation and Results Discussion. SpringerBriefs in Applied Sciences and Technology, 2017, , 43-75.	0.2	0
26	Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic Systems. SpringerBriefs in Applied Sciences and Technology, 2017, , 21-35.	0.2	3
27	Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot. Sensors, 2016, 16, 1458.	2.1	64
28	Comparison between Choquet and Sugeno integrals as aggregation operators for pattern recognition. , $2016, , .$		6
29	General Type-2 fuzzy edge detectors applied to face recognition systems. , 2016, , .		5
30	A Generalized Type-2 Fuzzy Logic System for the dynamic adaptation the parameters in a Bee Colony Optimization algorithm applied in an autonomous mobile robot control., 2016,,.		11
31	Optimization with genetic algorithm and particle swarm optimization of type-2 fuzzy integrator for ensemble neural network in time series. , 2016, , .		4
32	General type-2 fuzzy edge detector applied on face recognition system using neural networks. , 2016, , .		3
33	An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft Computing, 2016, 20, 773-784.	2.1	158
34	Optimization of interval type-2 fuzzy systems for image edge detection. Applied Soft Computing Journal, 2016, 47, 631-643.	4.1	136
35	A generalized type-2 fuzzy granular approach with applications to aerospace. Information Sciences, 2016, 354, 165-177.	4.0	204
36	A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Information Sciences, 2016, 354, 257-274.	4.0	346

#	Article	IF	Citations
37	Method for Higher Order polynomial Sugeno Fuzzy Inference Systems. Information Sciences, 2016, 351, 76-89.	4.0	15
38	Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Applied Soft Computing Journal, 2016, 38, 860-871.	4.1	125
39	Optimization by Cuckoo Search of Interval Type-2 Fuzzy Logic Systems for Edge Detection. Studies in Fuzziness and Soft Computing, 2016, , 141-154.	0.6	3
40	Choquet Integral with Interval Type 2 Sugeno Measures as an Integration Method for Modular Neural Networks. Studies in Fuzziness and Soft Computing, 2016, , 71-86.	0.6	1
41	Method for Uncertainty Measurement and Its Application to the Formation of Interval Type-2 Fuzzy Sets. Advances in Intelligent Systems and Computing, 2016, , 61-74.	0.5	0
42	Response integration in modular neural networks using Choquet Integral with Interval type 2 Sugeno measures. , 2015, , .		4
43	Fuzzy Index to Evaluate Edge Detection in Digital Images. PLoS ONE, 2015, 10, e0131161.	1.1	17
44	Method for Measurement of Uncertainty Applied to the Formation of Interval Type-2 Fuzzy Sets. Studies in Computational Intelligence, 2015, , 13-25.	0.7	5
45	Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Systems With Applications, 2015, 42, 5904-5914.	4.4	251
46	Color Image Edge Detection Method Based on Interval Type-2 Fuzzy Systems. Studies in Computational Intelligence, 2015, , 3-11.	0.7	4
47	Information granule formation via the concept of uncertainty-based information with Interval Type-2 Fuzzy Sets representation and Takagi–Sugeno–Kang consequents optimized with Cuckoo search. Applied Soft Computing Journal, 2015, 27, 602-609.	4.1	138
48	Uncertainty-Based Information Granule Formation. Studies in Computational Intelligence, 2014, , 113-123.	0.7	2
49	Genetic Algorithm Optimization for Type-2 Non-singleton Fuzzy Logic Controllers. Studies in Computational Intelligence, 2014, , 3-18.	0.7	23
50	Fuzzy granular gravitational clustering algorithm for multivariate data. Information Sciences, 2014, 279, 498-511.	4.0	113
51	Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Computing, 2014, 18, 1213-1224.	2.1	99
52	Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic. IEEE Transactions on Fuzzy Systems, 2014, 22, 1515-1525.	6.5	222
53	Using MatLab's fuzzy logic toolbox to create an application for RAMSET in software engineering courses. Computer Applications in Engineering Education, 2013, 21, 596-605.	2.2	7
54	Computational intelligence software for interval typeâ€2 fuzzy logic. Computer Applications in Engineering Education, 2013, 21, 737-747.	2.2	23

#	Article	IF	CITATIONS
55	Towards a Personality Fuzzy Model Based on Big Five Patterns for Engineers Using an ANFIS Learning Approach. Lecture Notes in Computer Science, 2013, , 456-466.	1.0	2
56	A new approach based on generalized type-2 fuzzy logic for edge detection., 2013,,.		5
57	A hybrid method for IT2 TSK formation based on the principle of justifiable granularity and PSO for spread optimization. , $2013,$, .		5
58	Generalized type-2 fuzzy logic in response integration of modular neural networks. , 2013, , .		5
59	Fuzzy operators for quality evaluation in images edge detection. , 2013, , .		0
60	Formation of general type-2 Gaussian membership functions based on the information granule numerical evidence. , $2013, , .$		5
61	A class of interval type-2 fuzzy neural networks illustrated with application to non-linear identification. , $2013, \ldots$		5
62	An Analysis of the Relationship between the Size of the Clusters and the Principle of Justifiable Granularity in Clustering Algorithms. Studies in Fuzziness and Soft Computing, 2013, , 239-263.	0.6	1
63	An edge detection method based on generalized type-2 fuzzy logic. , 2013, , .		3
64	An Analysis on the Intrinsic Implementation of the Principle of Justifiable Granularity in Clustering Algorithms. Studies in Computational Intelligence, 2013, , 121-134.	0.7	3
65	Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks in Nonlinear Identification. Advances in Fuzzy Systems, 2013, 2013, 1-16.	0.6	20
66	Type-2 Fuzzy Grammar in Language Evolution. Studies in Computational Intelligence, 2013, , 501-515.	0.7	7
67	Interval Type-2 Fuzzy System for Image Edge Detection Quality Evaluation Applied to Synthetic and Real Images. Studies in Computational Intelligence, 2013, , 147-157.	0.7	0
68	Type-2 Fuzzy Logic Grammars in Language Evolution. Studies in Fuzziness and Soft Computing, 2013, , 265-286.	0.6	0
69	Distance Aproximator Using IEEE 802.11 Received Signal Strength and Fuzzy Logic. Lecture Notes in Computer Science, 2013, , 411-420.	1.0	3
70	Simulation of language evolution using Fuzzy Grammars. , 2012, , .		2
71	Fuzzy granular gravitational clustering algorithm. , 2012, , .		6
72	Interval type-2 fuzzy logic for image edge detection quality evaluation. , 2012, , .		6

#	Article	IF	CITATIONS
73	Decision making fuzzy model for software engineering role assignment based on fuzzy logic and big five patterns using RAMSET. Intelligent Decision Technologies, 2011, 6, 59-67.	0.6	3
74	Assessment of Uncertainty in the Projective Tree Test Using an ANFIS Learning Approach. Lecture Notes in Computer Science, 2011, , 46-57.	1.0	0
75	Fuzzy Models for Complex Social Systems Using Distributed Agencies in Poverty Studies. Communications in Computer and Information Science, 2011, , 391-400.	0.4	3
76	A T-S Fuzzy Logic Controller for biped robot walking based on adaptive network fuzzy inference system. , 2010, , .		8
77	Type-2 fuzzy load regulation of a servomechanism with backlash using only motor position measurements. , 2010, , .		3
78	Experiences in software engineering courses using psychometrics with RAMSET., 2010,,.		13
79	An Interval Type-2 Fuzzy Neural Network for Chaotic Time Series Prediction with Cross-Validation and Akaike Test. Studies in Computational Intelligence, 2010, , 269-285.	0.7	30
80	Towards a Fuzzy Model for RAMSET: Role Assignment Methodology for Software Engineering Teams. Studies in Computational Intelligence, 2010, , 23-41.	0.7	2
81	Big Five Patterns for Software Engineering Roles Using an ANFIS Learning Approach with RAMSET. Lecture Notes in Computer Science, 2010, , 428-439.	1.0	16
82	A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Information Sciences, 2009, 179, 2175-2193.	4.0	261
83	Intelligent control using an Interval Type-2 Fuzzy Neural Network with a hybrid learning algorithm. , 2008, , .		5
84	Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox. , 2008, , 104-114.		42
85	A Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks: The Case of Time Series Prediction. Studies in Computational Intelligence, 2008, , 363-386.	0.7	15
86	Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks., 2007,,.		3
87	An Interval Type-2 Fuzzy Logic Toolbox for Control Applications. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	99
88	Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks. , 2007, , .		17
89	Interval Type-2 Fuzzy Logic for Intelligent Control Applications. , 2007, , .		9