Hang T Ta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749683/publications.pdf

Version: 2024-02-01

159585 182427 2,905 70 30 51 h-index citations g-index papers 72 72 72 3554 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Osteosarcoma treatment: state of the art. Cancer and Metastasis Reviews, 2009, 28, 247-263.	5.9	281
2	Injectable chitosan hydrogels for localised cancer therapy. Journal of Controlled Release, 2008, 126, 205-216.	9.9	255
3	Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal, 2022, 164, 110974.	5.4	134
4	A chitosan–dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials, 2009, 30, 3605-3613.	11.4	133
5	Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. Biosensors, 2020, 10, 182.	4.7	102
6	High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by ¹⁹ F Magnetic Resonance and Optical Imaging. ACS Nano, 2018, 12, 9162-9176.	14.6	98
7	Enzymatic Single-Chain Antibody Tagging. Circulation Research, 2011, 109, 365-373.	4.5	90
8	A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials, 2009, 30, 4815-4823.	11.4	89
9	Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of ¹⁹ F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules, 2017, 18, 1145-1156.	5.4	86
10	Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials, 2017, 134, 31-42.	11.4	78
11	The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opinion on Drug Delivery, 2018, 15, 33-45.	5.0	77
12	Novel iron oxide–cerium oxide core–shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. Journal of Materials Chemistry B, 2018, 6, 4937-4951.	5.8	67
13	Chitosan-dibasic orthophosphate hydrogel: A potential drug delivery system. International Journal of Pharmaceutics, 2009, 371, 134-141.	5.2	66
14	Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Advances, 2020, 10, 43682-43703.	3.6	62
15	Responsive Upconversion Nanoprobe for Backgroundâ€Free Hypochlorous Acid Detection and Bioimaging. Small, 2019, 15, e1803712.	10.0	59
16	Treatment of atherosclerotic plaque: perspectives on theranostics. Journal of Pharmacy and Pharmacology, 2019, 71, 1029-1043.	2.4	56
17	Cyclopropane-1,1-dicarboxylate is a slow-, tight-binding inhibitor of rice ketol-acid reductoisomerase. Plant Science, 2005, 168, 1035-1040.	3.6	55
18	Enhanced Performance of Polymeric ¹⁹ F MRI Contrast Agents through Incorporation of Highly Water-Soluble Monomer MSEA. Macromolecules, 2018, 51, 5875-5882.	4.8	50

#	Article	IF	Citations
19	Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2083-2105.	5.2	49
20	Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. Nanoscale, 2018, 10, 15103-15115.	5.6	46
21	Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nature Protocols, 2015, 10, 90-105.	12.0	45
22	Targeted Molecular Imaging of Cardiovascular Diseases by Iron Oxide Nanoparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 601-613.	2.4	44
23	Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles. Materials Research Express, 2017, 4, 116105.	1.6	38
24	Investigating the Use of Layered Double Hydroxide Nanoparticles as Carriers of Metal Oxides for Theranostics of ROS-Related Diseases. ACS Applied Bio Materials, 2019, 2, 5930-5940.	4.6	38
25	Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease., 2019, 204, 107404.		38
26	Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 507-519.	3.3	37
27	The choice of targets and ligands for site-specific delivery of nanomedicine to atherosclerosis. Cardiovascular Research, 2020, 116, 2055-2068.	3.8	37
28	Hydrogels Based on Poly(aspartic acid): Synthesis and Applications. Frontiers in Chemistry, 2019, 7, 755.	3.6	36
29	Non-invasive imaging techniques for the differentiation of acute and chronic thrombosis. Thrombosis Research, 2019, 177, 161-171.	1.7	35
30	Recent Advances in the Development of Theranostic Nanoparticles for Cardiovascular Diseases. Nanotheranostics, 2021, 5, 499-514.	5.2	34
31	Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. Journal of Materials Chemistry B, 2021, 9, 7291-7301.	5.8	32
32	Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells. Analytica Chimica Acta, 2020, 1103, 156-163.	5.4	31
33	Different Approaches to Develop Nanosensors for Diagnosis of Diseases. Advanced Science, 2020, 7, 2001476.	11.2	31
34	Chitosan Nanococktails Containing Both Ceria and Superparamagnetic Iron Oxide Nanoparticles for Reactive Oxygen Species-Related Theranostics. ACS Applied Nano Materials, 2021, 4, 3604-3618.	5.0	31
35	The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacology and Translational Science, 2020, 3, 457-471.	4.9	27
36	Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: Implications for lipoprotein binding and atherosclerosis., 2018, 187, 88-97.		26

#	Article	IF	CITATIONS
37	Lipid-encapsulated upconversion nanoparticle for near-infrared light-mediated carbon monoxide release for cancer gas therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 211-221.	4.3	26
38	Enzymatic Antibody Tagging: Toward a Universal Biocompatible Targeting Tool. Trends in Cardiovascular Medicine, 2012, 22, 105-111.	4.9	25
39	Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.	4.3	21
40	Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Lab on A Chip, 2021, 21, 2008-2018.	6.0	21
41	Therapeutic gasâ€releasing nanomedicines with controlled release: Advances and perspectives. Exploration, 2022, 2, .	11.0	19
42	ROS directly activates transforming growth factor \hat{l}^2 type 1 receptor signalling in human vascular smooth muscle cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129463.	2.4	18
43	Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. Journal of Cell Communication and Signaling, 2019, 13, 539-548.	3.4	17
44	Collagen and the effect of poly- <scp>l</scp> -lactic acid based materials on its synthesis. Biomaterials Science, 2021, 9, 5714-5731.	5.4	17
45	Silver/Iron Oxide Nano-Popcorns for Imaging and Therapy. ACS Applied Nano Materials, 2021, 4, 10136-10147.	5.0	17
46	Vitamin E-facilitated carbon monoxide pro-drug nanomedicine for efficient light-responsive combination cancer therapy. Biomaterials Science, 2021, 9, 6086-6097.	5.4	17
47	Engineering chitosan nano-cocktail containing iron oxide and ceria: A two-in-one approach for treatment of inflammatory diseases and tracking of material delivery. Materials Science and Engineering C, 2021, 131, 112477.	7.3	17
48	Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomaterials Science, 2021, 10, 10-50.	5.4	15
49	Self-confirming molecular imaging of activated platelets via iron oxide nanoparticles displaying unique dual MRI contrast. Atherosclerosis, 2017, 263, e146.	0.8	14
50	Development of "dual-key-and-lock―responsive probes for biosensing and imaging. New Journal of Chemistry, 2020, 44, 12890-12896.	2.8	14
51	Investigating the Effect of Biomaterials Such as Poly-(l-Lactic Acid) Particles on Collagen Synthesis In Vitro: Method Is Matter. Journal of Functional Biomaterials, 2020, 11, 51.	4.4	14
52	Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118848.	4.1	13
53	Targeted molecular imaging and cell homing in cardiovascular disease via antibody-sortagging. Atherosclerosis, 2015, 241, e26.	0.8	12
54	Mechanobiology in cardiology: Micro―and nanotechnologies to probe mechanosignaling. View, 2021, 2, 20200080.	5.3	11

#	Article	lF	CITATIONS
55	In-air particle generation by on-chip electrohydrodynamics. Lab on A Chip, 2021, 21, 1779-1787.	6.0	11
56	Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis, 2021, 42, 2230-2237.	2.4	10
57	A Novel Biotechnological Approach for Targeted Regenerative Cell Therapy and Molecular Imaging of Atherothrombosis. Heart Lung and Circulation, 2010, 19, S10.	0.4	9
58	Protein Nanoparticles for Enhanced Oral Delivery of Coenzyme-Q10: <i>in Vitro</i> and <i>in Silico</i> Studies. ACS Biomaterials Science and Engineering, 2023, 9, 2846-2856.	5.2	9
59	Visualizing stem cells in vivo using magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1760.	6.1	8
60	Atherothrombosisâ€onâ€Chip: A Siteâ€Specific Microfluidic Model for Thrombus Formation and Drug Discovery. Advanced Biology, 2022, 6, .	2.5	8
61	Activatable Magnetic Resonance Nanosensor as a Potential Imaging Agent for Detecting and Discriminating Thrombosis. Atherosclerosis Supplements, 2018, 32, 159.	1.2	6
62	Antimicrobial anilinium polymers: The properties of poly(N , N â€dimethylaminophenylene) Tj ETQq0 0 0 rgBT /	Overlock 19	0 Tf 50 462 To
63	On-demand deterministic release of particles and cells using stretchable microfluidics. Nanoscale Horizons, 2022, 7, 414-424.	8.0	6
64	Late-Breaking Basic Science Abstracts From the American Heart Association's Scientific Sessions 2010, Chicago, Illinois, November 13–17, 2010. Circulation Research, 2010, 107, .	4.5	5
65	Enhanced Blood Plasma Extraction Utilising Viscoelastic Effects in a Serpentine Microchannel. Biosensors, 2022, 12, 120.	4.7	4
66	Placentaâ€Derived Mesenchymal Stem Cells for Treatment of Diseases: A Clinically Relevant Source. Advanced Therapeutics, 2022, 5, .	3.2	4
67	Anticancer Activity and Therapeutic Applications of Chitosan Nanoparticles., 2010,, 271-284.		3
68	Wet oxidation of 3C-SiC on Si for MEMS processing and use in harsh environments: Effects of the film thicknesses, crystalline orientations, and growth temperatures. Sensors and Actuators A: Physical, 2021, 317, 112474.	4.1	2
69	Effects of nanoparticles on the blood coagulation system (nanoparticle interface with the blood) Tj ETQq $1\ 1\ 0.0$	784314 rgE	BT /2verlock 1
70	Frontispiece: Mechanobiology in cardiology: Micro―and nanotechnologies to probe mechanosignaling (View 2/2021). View, 2021, 2, e119.	5.3	0