Sam M Webb

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7749682/sam-m-webb-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,655 48 140 91 h-index g-index citations papers 6.17 146 9,795 7.7 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
140	Reexamination of 2.5-Ga "whiff" of oxygen interval points to anoxic ocean before GOE <i>Science Advances</i> , 2022 , 8, eabj7190	14.3	10
139	X-ray Fluorescence Spectroscopy of Picrolite Raw Material on Cyprus. <i>Heritage</i> , 2022 , 5, 664-677	1.6	1
138	Organic sulfur fluxes and geomorphic control of sulfur isotope ratios in rivers. <i>Earth and Planetary Science Letters</i> , 2021 , 562, 116838	5.3	1
137	Changing chemistry of particulate manganese in the near- and far-field hydrothermal plumes from 15°S East Pacific Rise and its influence on metal scavenging. <i>Geochimica Et Cosmochimica Acta</i> , 2021 , 300, 95-118	5.5	4
136	An ecophysiological explanation for manganese enrichment in rock varnish. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
135	Synchrotron x-ray fluorescence analysis reveals diagenetic alteration of fossil melanosome trace metal chemistry. <i>Palaeontology</i> , 2021 , 64, 63-73	2.9	0
134	Iron Heterogeneity in Early Active Multiple Sclerosis Lesions. <i>Annals of Neurology</i> , 2021 , 89, 498-510	9.4	9
133	Microbial sulfate reduction and organic sulfur formation in sinking marine particles. <i>Science</i> , 2021 , 371, 178-181	33.3	18
132	Electrochemically induced metal- vs. ligand-based redox changes in mackinawite: identification of a Fe- and polysulfide-containing intermediate. <i>Dalton Transactions</i> , 2021 , 50, 11763-11774	4.3	O
131	Manganese oxides in Martian meteorites Northwest Africa (NWA) 7034 and 7533. <i>Icarus</i> , 2021 , 364, 114	143781	2
130	Rapid, Concurrent Formation of Organic Sulfur and Iron Sulfides During Experimental Sulfurization of Sinking Marine Particles. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2021GB007062	5.9	4
129	Seasonal Zinc Storage and a Strategy for Its Use in Buds of Fruit Trees. <i>Plant Physiology</i> , 2020 , 183, 120	0 && 12	. 6
128	Robust framework and software implementation for fast speciation mapping. <i>Journal of Synchrotron Radiation</i> , 2020 , 27, 1049-1058	2.4	3
127	Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. <i>Scientific Reports</i> , 2020 , 10, 8970	4.9	4
126	Deposition of sulfate aerosols with positive B3S in the Neoarchean. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 285, 1-20	5.5	3
125	Sulfur isotope fractionation between aqueous and carbonate-associated sulfate in abiotic calcite and aragonite. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 280, 317-339	5.5	10
124	Brachiopod B4SCAS microanalyses indicate a dynamic, climate-influenced Permo-Carboniferous sulfur cycle. <i>Earth and Planetary Science Letters</i> , 2020 , 546, 116428	5.3	6

123	Arsenolipids in Cultured Strain ML and Their Occurrence in Biota and Sediment from Mono Lake, California. <i>Life</i> , 2020 , 10,	3	6
122	Reinforcement Learning for Adaptive Illumination with X-rays 2020,		4
121	Investigation of the effect of taurine supplementation on muscle taurine content in the mdx mouse model of Duchenne muscular dystrophy using chemically specific synchrotron imaging. <i>Analyst, The</i> , 2020 , 145, 7242-7251	5	1
120	Sample preparation with sucrose cryoprotection dramatically alters Zn distribution in the rodent hippocampus, as revealed by elemental mapping. <i>Journal of Analytical Atomic Spectrometry</i> , 2020 , 35, 2498-2508	3.7	9
119	Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 201910	64 ⁹⁴	9
118	Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 17880-17889	11.5	14
117	Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate. <i>Chemical Geology</i> , 2019 , 523, 59-72	4.2	15
116	Fe-bearing phases in modern lacustrine microbialites from Mexico. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 253, 201-230	5.5	5
115	Insights Into the Mineralogy and Surface Chemistry of Extracellular Biogenic S Globules Produced by. <i>Frontiers in Microbiology</i> , 2019 , 10, 271	5.7	15
114	Mid-Proterozoic Ferruginous Conditions Reflect Postdepositional Processes. <i>Geophysical Research Letters</i> , 2019 , 46, 3114-3123	4.9	4
113	Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency. <i>Plant, Cell and Environment</i> , 2019 , 42, 3167-3181	8.4	13
112	Chemical and Isotopic Evidence for Organic Matter Sulfurization in Redox Gradients Around Mangrove Roots. <i>Frontiers in Earth Science</i> , 2019 , 7,	3.5	9
111	Fate of cobalt and nickel in mackinawite during diagenetic pyrite formation. <i>American Mineralogist</i> , 2019 , 104, 917-928	2.9	10
110	The source of sulfate in brachiopod calcite: Insights from EXRF imaging and XANES spectroscopy. <i>Chemical Geology</i> , 2019 , 529, 119328	4.2	6
109	Photons, Folios, and Fossils: The X-ray Imaging and Spectroscopy Program of Ancient Materials at SSRL. <i>Synchrotron Radiation News</i> , 2019 , 32, 22-28	0.6	3
108	Biogenesis of zinc storage granules in. <i>Journal of Experimental Biology</i> , 2018 , 221,	3	20
107	Periphyton and abiotic factors influencing arsenic speciation in aquatic environments. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 903-913	3.8	7
106	Insights into the Interconnection of the Electrodes and Electrolyte Species in LithiumBulfur Batteries Using Spatially Resolved Operando X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5303-5316	3.8	8

105	From lapis lazuli to ultramarine blue: investigating Cennino Cennini recipe using sulfur K-edge XANES. <i>Pure and Applied Chemistry</i> , 2018 , 90, 463-475	2.1	24
104	Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. <i>Nature Communications</i> , 2018 , 9, 3409	17.4	41
103	Molecular genetic and biochemical characterization of a putative family of zinc metalloproteins in Caenorhabditis elegans. <i>Metallomics</i> , 2018 , 10, 1814-1823	4.5	2
102	Coupled X-ray Fluorescence and X-ray Absorption Spectroscopy for Microscale Imaging and Identification of Sulfur Species within Tissues and Skeletons of Scleractinian Corals. <i>Analytical Chemistry</i> , 2018 , 90, 12559-12566	7.8	7
101	Redox Fluctuations and Organic Complexation Govern Uranium Redistribution from U(IV)-Phosphate Minerals in a Mining-Polluted Wetland Soil, Brittany, France. <i>Environmental Science & Environmental Science</i>	10.3	24
100	A new synchrotron rapid-scanning X-ray fluorescence (SRS-XRF) imaging station at SSRL beamline 6-2. <i>Journal of Synchrotron Radiation</i> , 2018 , 25, 1565-1573	2.4	16
99	Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment. <i>Journal of Nuclear Materials</i> , 2017 , 486, 283-297	3.3	18
98	Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. <i>Acta Neuropathologica</i> , 2017 , 134, 45-64	14.3	67
97	Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 197, 27-42	5.5	15
96	Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range. <i>Environmental Science & Environmental Science & Environm</i>	10.3	42
95	Evidence for the Root-Uptake of Arsenite at Lateral Root Junctions and Root Apices in Rice (Oryza sativa L.) 2017 , 1, 3		7
94	Nutrient and pollutant metals within earthworm residues are immobilized in soil during decomposition. <i>Soil Biology and Biochemistry</i> , 2016 , 101, 217-225	7.5	5
93	The chemical, mechanical, and hydrological evolution of weathering granitoid. <i>Journal of Geophysical Research F: Earth Surface</i> , 2016 , 121, 1410-1435	3.8	31
92	Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy. <i>Nature Communications</i> , 2016 , 7, 12634	17.4	61
91	Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction. <i>Environmental Science & Environmental Science & Environme</i>	10.3	46
90	Copper Speciation in Variably Toxic Sediments at the Ely Copper Mine, Vermont, United States. <i>Environmental Science & Environmental &</i>	10.3	7
89	Manganese mineralogy and diagenesis in the sedimentary rock record. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 173, 210-231	5.5	106
88	Sulfur K-edge XANES of lazurite: Toward determining the provenance of lapis lazuli. <i>Microchemical Journal</i> , 2016 , 125, 299-307	4.8	21

(2013-2016)

87	From mineralogy and redox conditions during deposition of the mid-Proterozoic Appekunny Formation, Belt Supergroup, Glacier National Park. <i>Special Paper of the Geological Society of America</i> , 2016 , 221-242		5
86	Deletion of Phytochelatin Synthase Modulates the Metal Accumulation Pattern of Cadmium Exposed C. elegans. <i>International Journal of Molecular Sciences</i> , 2016 , 17, 257	6.3	10
85	Zinc Speciation in Contaminated Sediments: Quantitative Determination of Zinc Coordination by X-ray Absorption Spectroscopy. <i>Aquatic Geochemistry</i> , 2015 , 21, 295-312	1.7	9
84	Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa). <i>Environmental Science & Description (Medicago Sativa)</i> . Environmental Science & Description (Medicago Sativa).	10.3	81
83	Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats. <i>Environmental Science & Environmental Scien</i>	10.3	36
82	Strain-guided mineralization in the bone-PDL-cementum complex of a rat periodontium. <i>Bone Reports</i> , 2015 , 3, 20-31	2.6	10
81	Sedimentary ironphosphorus cycling under contrasting redox conditions in a eutrophic estuary. <i>Chemical Geology</i> , 2015 , 392, 19-31	4.2	40
8o	Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury. <i>Frontiers in Microbiology</i> , 2015 , 6, 596	5.7	9
79	Mineral density volume gradients in normal and diseased human tissues. <i>PLoS ONE</i> , 2015 , 10, e012161	1 3.7	39
78	Neoarchean carbonate-associated sulfate records positive IIS anomalies. <i>Science</i> , 2014 , 346, 739-41	33.3	61
77	Leaf metallome preserved over 50 million years. <i>Metallomics</i> , 2014 , 6, 774-82	4.5	31
76	Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2127-36	4.3	51
75	The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2014 , 228, 754-67	1.7	5
74	Microbiological reduction of Sb(V) in anoxic freshwater sediments. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 218-26	10.3	83
73	Constraints on Precipitation of the Ferrous Arsenite Solid HFe(AsO). <i>Journal of Environmental Quality</i> , 2014 , 43, 947-54	3.4	3
72	Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation. <i>Journal of Experimental Botany</i> , 2014 , 65, 953-64	7	36
71	Elastic discontinuity due to ectopic calcification in a human fibrous joint. <i>Acta Biomaterialia</i> , 2013 , 9, 4787-95	10.8	7
70	Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 104, 29-41	5.5	28

69	Manganese-oxidizing photosynthesis before the rise of cyanobacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11238-43	11.5	150
68	Reply to Jones and Crowe: Correcting mistaken views of sedimentary geology, Mn-oxidation rates, and molecular clocks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E4119-20	11.5	8
67	Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. <i>New Phytologist</i> , 2013 , 198, 721-731	9.8	89
66	The plastic nature of the human bone-periodontal ligament-tooth fibrous joint. <i>Bone</i> , 2013 , 57, 455-67	4.7	27
65	Mercury localization and speciation in plants grown hydroponically or in a natural environment. <i>Environmental Science & Environmental Science & Envir</i>	10.3	60
64	In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8525-34	16.4	419
63	Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen. <i>Environmental Science & Environmental Science & Envi</i>	10.3	36
62	Micro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera: Chironomidae) and Culex tarsalis Coquillett (Culicidae). <i>Environmental Pollution</i> , 2013 , 180, 78-83	9.3	15
61	(Micro)spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	32
60	The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 106, 344-363	5.5	46
59	Uranium redox transition pathways in acetate-amended sediments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4506-4511	11.5	138
58	Brine film thicknesses on mica surfaces under geologic CO2 sequestration conditions and controlled capillary pressures. <i>Water Resources Research</i> , 2013 , 49, 5071-5076	5.4	13
57	Melanin concentration gradients in modern and fossil feathers. <i>PLoS ONE</i> , 2013 , 8, e59451	3.7	30
56	Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. <i>Environmental Science & Environmental Scie</i>	10.3	42
55	Imaging of stroke: a comparison between X-ray fluorescence and magnetic resonance imaging methods. <i>Magnetic Resonance Imaging</i> , 2012 , 30, 1416-23	3.3	12
54	Imaging translocation and transformation of bioavailable selenium by Stanleya pinnata with X-ray microscopy. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 1277-85	4.4	4
53	Arsenic and chromium speciation in an urban contaminated soil. <i>Chemosphere</i> , 2012 , 88, 1196-201	8.4	40
52	Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 12621-5	11.5	132

(2009-2011)

51	Diversity of Mn oxides produced by Mn(II)-oxidizing fungi. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 2762-2776	5.5	131
50	Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 6655-6671	5.5	61
49	The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 5648-5663	5.5	53
48	Coupled bioticebiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 6048-6063	5.5	146
47	Uranium speciation and stability after reductive immobilization in aquifer sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 6497-6510	5.5	95
46	Trace metals as biomarkers for eumelanin pigment in the fossil record. <i>Science</i> , 2011 , 333, 1622-6	33.3	129
45	A bacterium that can grow by using arsenic instead of phosphorus. <i>Science</i> , 2011 , 332, 1163-6	33.3	331
44	The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software 2011,		81
43	Discontinuities in the human bone-PDL-cementum complex. <i>Biomaterials</i> , 2011 , 32, 7106-17	15.6	31
42	Microscale imaging and identification of Fe speciation and distribution during fluid-mineral reactions under highly reducing conditions. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	57
41	Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment. <i>Environmental Science & Environmental Science & Env</i>	10.3	16
40	Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus". <i>Science</i> , 2011 , 332, 1149-1149	33.3	21
39	Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. <i>British Journal of Dermatology</i> , 2010 , 163, 1077-81	4	46
38	Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. <i>Environmental Science & Environmental Science & En</i>	10.3	137
37	Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	77
36	Site specific X-ray anomalous dispersion of the geometrically frustrated kagom[magnet, herbertsmithite, ZnCu(3)(OH)(6)Cl(2). <i>Journal of the American Chemical Society</i> , 2010 , 132, 16185-90	16.4	133
35	Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems. <i>Applied Geochemistry</i> , 2010 , 25, 389-399	3.5	56
34	The Interaction of Bromide Ions with Graphitic Materials. <i>Advanced Materials</i> , 2009 , 21, 102-106	24	22

33	A seafloor microbial biome hosted within incipient ferromanganese crusts. <i>Nature Geoscience</i> , 2009 , 2, 872-876	18.3	74
32	Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. <i>Environmental Science & Environmental S</i>	10.3	136
31	Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson's disease. <i>Biochemistry</i> , 2009 , 48, 891-7	3.2	61
30	XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 7384-90	10.3	121
29	Structural characterization of terrestrial microbial Mn oxides from Pinal Creek, AZ. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 889-910	5.5	93
28	Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 6517-6530	5.5	72
27	Nonreductive Biomineralization of Uranium(VI) Phosphate Via Microbial Phosphatase Activity in Anaerobic Conditions. <i>Geomicrobiology Journal</i> , 2009 , 26, 431-441	2.5	68
26	Comparison of EXAFS foil spectra from around the world. <i>Journal of Physics: Conference Series</i> , 2009 , 190, 012032	0.3	7
25	Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. <i>Environmental Science & Environmental </i>	10.3	111
24	Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 4488-4507	5.5	164
23	XAS study of a metal-induced phase transition by a microbial surfactant. <i>Langmuir</i> , 2008 , 24, 4999-5002	4	13
22	High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 5218-20	6 ^{4.8}	38
21	Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6905-9	4.8	43
20	Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. <i>Environmental Science & Environmental Science & Environment</i>	10.3	143
19	Determination of uranyl incorporation into biogenic manganese oxides using x-ray absorption spectroscopy and scattering. <i>Environmental Science & Environmental Science & Envi</i>	10.3	73
18	Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1988-96	4.8	167
17	Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. <i>Geochimica Et Cosmochimica Acta</i> , 2006 , 70, 27-43	5.5	155
16	Structural Influences of Sodium and Calcium Ions on the Biogenic Manganese Oxides Produced by the Marine Bacillus Sp., Strain SG-1. <i>Geomicrobiology Journal</i> , 2005 , 22, 181-193	2.5	48

LIST OF PUBLICATIONS

15	Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. <i>American Mineralogist</i> , 2005 , 90, 143-154	2.9	196
14	Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. <i>American Mineralogist</i> , 2005 , 90, 1342-1357	2.9	214
13	SIXPack a Graphical User Interface for XAS Analysis Using IFEFFIT. <i>Physica Scripta</i> , 2005 , 1011	2.6	755
12	EXAFS, XANES and In-Situ SRXRD Characterization of Biogenic Manganese Oxides Produced in Sea Water. <i>Physica Scripta</i> , 2005 , 888	2.6	17
11	Dopant site selectivity in BaCe0.85M0.15O3-Iby extended x-ray absorption fine structure. <i>Journal of Applied Physics</i> , 2005 , 97, 054101	2.5	21
10	Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5558-63	11.5	236
9	BIOGENIC MANGANESE OXIDES: Properties and Mechanisms of Formation. <i>Annual Review of Earth and Planetary Sciences</i> , 2004 , 32, 287-328	15.3	881
8	XAS speciation of arsenic in a hyper-accumulating fern. <i>Environmental Science & Emp; Technology</i> , 2003 , 37, 754-60	10.3	155
7	Zinc and lead sequestration in an impacted wetland system. <i>Journal of Environmental Management</i> , 2003 , 8, 103-112		57
6	Quick X-ray absorption spectroscopy for determining metal speciation in environmental samples. <i>Journal of Synchrotron Radiation</i> , 2001 , 8, 928-30	2.4	26
5	An EXAFS study of zinc coordination in microbial cells. <i>Journal of Synchrotron Radiation</i> , 2001 , 8, 943-5	2.4	13
4	Zinc Speciation in a Contaminated Aquatic Environment: 'Characterization of Environmental Particles by Analytical Electron Microscopy. <i>Environmental Science & Description of Environmental Science & Description of</i>	93 ^{10.3}	49
3	Fate of Neptunium in an Anaerobic, Ethanogenic Microcosm. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 556, 1141		4
2	Determination of photochemically available iron in ambient aerosols. <i>Journal of Geophysical Research</i> , 1996 , 101, 14441-14449		37
1	Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. <i>Environmental Science & Environmental Science & Envi</i>	10.3	162