Romeo-Iulian Olariu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749435/publications.pdf

Version: 2024-02-01

53 papers 2,171 citations

304368 22 h-index 223531 46 g-index

54 all docs

54 docs citations

times ranked

54

2917 citing authors

#	Article	IF	CITATIONS
1	Nitrated phenols in the atmosphere: a review. Atmospheric Environment, 2005, 39, 231-248.	1.9	348
2	Sources and Sinks of Hydroxyl Radicals upon Irradiation of Natural Water Samples. Environmental Science & Environmental Scienc	4.6	328
3	Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chemical Society Reviews, 2006, 35, 441-53.	18.7	195
4	FT–IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmospheric Environment, 2002, 36, 3685-3697.	1.9	171
5	Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the •OH scavengers bicarbonate and carbonate. Water Research, 2009, 43, 4718-4728.	5.3	136
6	A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions. Journal of Hazardous Materials, 2011, 197, 244-253.	6.5	88
7	Kinetics, equilibrium modeling, and thermodynamics on removal of Cr(VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly(vinyl amine) cryogels. Chemical Engineering Journal, 2017, 330, 675-691.	6.6	82
8	Chemical composition of rainwater in the northeastern Romania, lasi region (2003–2006). Atmospheric Environment, 2007, 41, 9452-9467.	1.9	61
9	Removal of lead(II) from aqueous solutions by a polyvinyl-chloride inclusion membrane without added plasticizer. Journal of Membrane Science, 2011, 377, 167-174.	4.1	60
10	Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinones. International Journal of Chemical Kinetics, 2000, 32, 696-702.	1.0	58
11	Investigations on the gas-phase photolysis and OH radical kinetics of methyl-2-nitrophenols. Physical Chemistry Chemical Physics, 2007, 9, 5686.	1.3	57
12	Assessing the transformation kinetics of 2- and 4-nitrophenol in the atmospheric aqueous phase. Implications for the distribution of both nitroisomers in the atmosphere. Atmospheric Environment, 2009, 43, 2321-2327.	1.9	44
13	Rate coefficients for the gas-phase reaction of NO3 radicals with selected dihydroxybenzenes. International Journal of Chemical Kinetics, 2004, 36, 577-583.	1.0	40
14	Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. Journal of Materials Science: Materials in Medicine, 2011, 22, 789-796.	1.7	40
15	Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight. Aquatic Sciences, 2009, 71, 34-45.	0.6	39
16	A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes and Pigments, 2012, 95, 79-88.	2.0	39
17	Size-resolved measurements of PM2.5 water-soluble elements in Iasi, north-eastern Romania: Seasonality, source apportionment and potential implications for human health. Science of the Total Environment, 2019, 695, 133839.	3.9	37
18	Kinetics of the reaction of O3 with selected benzenediols. International Journal of Chemical Kinetics, 2003, 35, 223-230.	1.0	32

#	Article	IF	CITATIONS
19	Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. International Journal of Tuberculosis and Lung Disease, 2011, 15, 1239-1245.	0.6	32
20	Formation of Organobrominated Compounds in the Presence of Bromide under Simulated Atmospheric Aerosol Conditions. ChemSusChem, 2008, 1, 197-204.	3.6	29
21	Ion composition of coarse and fine particles in lasi, north-eastern Romania: Implications for aerosols chemistry in the area. Atmospheric Environment, 2011, 45, 906-916.	1.9	29
22	FT-IR Product Study of the Reactions of NO ₃ Radicals With <i>ortho</i> -, <i>meta</i> -, and <i>para</i> -Cresol. Environmental Science & Envi	4.6	27
23	Chemical Mechanism Development: Laboratory Studies and Model Applications. Journal of Atmospheric Chemistry, 2002, 42, 323-357.	1.4	22
24	SAMPLE PREPARATION FOR TRACE ANALYSIS BY CHROMATOGRAPHIC METHODS. Journal of Liquid Chromatography and Related Technologies, 2010, 33, 1174-1207.	0.5	20
25	4-Methylpyrimidinium Ylides II: Selective Reactions of Pyrimidinium Ylides with Activated Alkynes. Synthesis, 2000, 2000, 2047-2050.	1.2	16
26	Chemical characteristics of size-resolved atmospheric aerosols in lasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area. Atmospheric Chemistry and Physics, 2018, 18, 5879-5904.	1.9	15
27	Development of a New Flow Reactor for Kinetic Studies. Application to the Ozonolysis of a Series of Alkenes. Journal of Physical Chemistry A, 2012, 116, 6169-6179.	1.1	13
28	Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry. Journal of Molecular Structure, 2010, 980, 163-171.	1.8	11
29	GCÂ×ÂGC-MS HYPHENATED TECHNIQUES FOR THE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR. Journal of Liquid Chromatography and Related Technologies, 2011, 34, 1077-1111.	0.5	11
30	Kinetic Study of the Gas-Phase Reactions of Chlorine Atoms with 2-Chlorophenol, 2-Nitrophenol, and Four Methyl-2-nitrophenol Isomers. Journal of Physical Chemistry A, 2015, 119, 4735-4745.	1.1	11
31	The Mechanism of Pyrolysis of Benzyl Azide: Spectroscopic Evidence for Benzenemethanimine Formation. Journal of Physical Chemistry A, 2015, 119, 4118-4126.	1.1	9
32	Assessment of the Anthropogenic Impact and Distribution of Potentially Toxic and Rare Earth Elements in Lake Sediments from North-Eastern Romania. Toxics, 2022, 10, 242.	1.6	9
33	Theoretical study of the molecular properties of benzyl azide, 2-, 3- and 4-methyl benzyl azide. European Physical Journal D, 2006, 39, 379-384.	0.6	8
34	Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions. Atmosphere, 2020, 11, 1346.	1.0	8
35	Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Atmosphere, 2020, 11, 256.	1.0	8
36	Applications of Liquid Chromatographic Techniques in the Chemical Characterization of Atmospheric Aerosols. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 322-348.	0.5	7

#	Article	IF	CITATIONS
37	Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour. Atmospheric Chemistry and Physics, 2022, 22, 2203-2219.	1.9	5
38	Adsorptive Performance of Soy Bran and Mustard Husk Towards Arsenic (V) lons from Synthetic Aqueous Solutions. Acta Chimica Slovenica, 2019, 66, 326-336.	0.2	4
39	STATISTICAL STUDY OF HEAVY METAL DISTRIBUTION IN THE SPECIFIC MUSHROOMS FROM THE STERIL DUMPS CALIMANI AREA. Environmental Engineering and Management Journal, 2010, 9, 659-665.	0.2	3
40	Dissipation kinetics of tebuconazole on <i>Malus domestica</i> (<i>Golden Delicious</i> and) Tj ETQq0 0 0 rgBT and Related Technologies, 2019, 42, 582-592.	/Overlock 0.5	10 Tf 50 62 2
41	Assessment of Surface Water Quality in the Podu Iloaiei Dam Lake (North-Eastern Romania): Potential Implications for Aquaculture Activities in the Area. Water (Switzerland), 2021, 13, 2395.	1.2	2
42	Gas-phase IR cross-sections and single crystal structures data for atmospheric relevant nitrocatechols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120379.	2.0	2
43	Depth Profiling of Diffraction-based Security Features in Authentic and Counterfeit Banknotes. Materiale Plastice, 2017, 54, 321-325.	0.4	2
44	Ozonolysis of a Series of Methylated Alkenes: Reaction Rate Coefficients and Gasâ€Phase Products. International Journal of Chemical Kinetics, 2015, 47, 596-605.	1.0	1
45	Investigation of the dynamics and kinetics involved in saline aerosol generation under air erosion of pure and contaminated halide salts. Journal of Aerosol Science, 2015, 81, 100-109.	1.8	1
46	Implications of Matrix Effects in Quantitative HPLC/ESI-ToF-MS Analyses of Atmospheric Organic Aerosols. Proceedings (mdpi), 2020, 55, .	0.2	1
47	Reversed-Phase High Performance Liquid Chromatographic Analysis of Three First Line Anti-Tuberculosis Drugs. Revista De Chimie (discontinued), 2019, 69, 3590-3592.	0.2	1
48	Atmospheric Wet Deposition Monitoring in Iasi, Romania., 2006, , 369-377.		0
49	Effects of Pretreatment Methods on the Enamel Surface Improving Sealant Adhesion. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2019, 40, 92-100.	0.5	O
50	RECOVERY OF SOME INORGANIC COMPOUNDS FROM THE SLUDGES RESULTED AFTER THE LEACHING OF URANYL IONS FROM URANIUM ORES. Environmental Engineering and Management Journal, 2008, 7, 401-407.	0.2	0
51	Analysis of Heavy Metals Content in the Soil and in the Macromycetes Species Growing on Mine Waste Dumps. Revista De Chimie (discontinued), 2008, 59, .	0.2	O
52	RADIOMETRIC METHOD FOR THE STUDY OF THE STEELS CORROSION. Environmental Engineering and Management Journal, 2010, 9, 939-944.	0.2	0
53	Authentication and Evaluation of the Technique of Minting the Romanian Coins of the 20th Century. I. Revista De Chimie (discontinued), 2017, 68, 2155-2159.	0.2	О