Ennio Tasciotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749323/publications.pdf

Version: 2024-02-01

192 papers 9,895 citations

41344 49 h-index 92 g-index

202 all docs 202 docs citations

times ranked

202

14083 citing authors

#	Article	IF	CITATIONS
1	Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology, 2013, 8, 61-68.	31.5	925
2	Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotechnology, 2008, 3, 151-157.	31.5	637
3	The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 2016, 11, 81-100.	3.3	499
4	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	14.6	455
5	Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized inÂvivoÂneovascularization. Nature Materials, 2015, 14, 532-539.	27.5	371
6	Loss of p53 drives neuron reprogramming in head and neck cancer. Nature, 2020, 578, 449-454.	27.8	241
7	Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 2017, 147, 155-168.	11.4	199
8	Multistage Nanovectors: From Concept to Novel Imaging Contrast Agents and Therapeutics. Accounts of Chemical Research, 2011, 44, 979-989.	15.6	198
9	Enabling individualized therapy through nanotechnology. Pharmacological Research, 2010, 62, 57-89.	7.1	188
10	Biodegradable Nanoneedles for Localized Delivery of Nanoparticles <i>in Vivo:</i> Exploring the Biointerface. ACS Nano, 2015, 9, 5500-5509.	14.6	171
11	Tailored Porous Silicon Microparticles: Fabrication and Properties. ChemPhysChem, 2010, 11, 1029-1035.	2.1	156
12	Bromelain Surface Modification Increases the Diffusion of Silica Nanoparticles in the Tumor Extracellular Matrix. ACS Nano, 2014, 8, 9874-9883.	14.6	152
13	Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials, 2015, 62, 128-137.	11.4	145
14	Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 2012, 33, 5308-5316.	11.4	128
15	Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochemical Journal, 2005, 390, 407-418.	3.7	127
16	Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nature Communications, 2021, 12, 5726.	12.8	126
17	Nanotechnology for breast cancer therapy. Biomedical Microdevices, 2009, 11, 49-63.	2.8	124
18	Unveiling the <i>iin Vivo</i> Protein Corona of Circulating Leukocyte-like Carriers. ACS Nano, 2017, 11, 3262-3273.	14.6	124

#	Article	IF	CITATIONS
19	Rapamycin-Loaded Biomimetic Nanoparticles Reverse Vascular Inflammation. Circulation Research, 2020, 126, 25-37.	4.5	106
20	Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach. Advanced Materials, 2018, 30, e1702749.	21.0	100
21	Tailoring of the Nanotexture of Mesoporous Silica Films and Their Functionalized Derivatives for Selectively Harvesting Low Molecular Weight Protein. ACS Nano, 2010, 4, 439-451.	14.6	92
22	Mitotic trafficking of silicon microparticles. Nanoscale, 2009, 1, 250.	5.6	91
23	Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1236-1243.	4.0	89
24	Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics, 2018, 8, 1131-1145.	10.0	89
25	Mesoporous Siliconâ€PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering. Advanced Functional Materials, 2012, 22, 282-293.	14.9	86
26	Nanotechnology in Medicine: From Inception to Market Domination. Journal of Drug Delivery, 2012, 2012, 1-7.	2.5	85
27	Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800490.	7.6	84
28	Exosome-like Nanovectors for Drug Delivery in Cancer. Current Medicinal Chemistry, 2019, 26, 6132-6148.	2.4	83
29	Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape. Journal of Controlled Release, 2015, 217, 263-272.	9.9	82
30	Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Translational Medicine, 2016, 5, 670-682.	3.3	76
31	Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome. Proteomics, 2010, 10, 496-505.	2.2	70
32	Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine, 2015, 10, 1923-1940.	3.3	70
33	Silicon Micro―and Nanofabrication for Medicine. Advanced Healthcare Materials, 2013, 2, 632-666.	7.6	67
34	<div>Effects of the protein corona on liposome–liposome and liposome–cell interactions</div> . International Journal of Nanomedicine, 2016, Volume 11, 3049-3063.	6.7	67
35	One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials, 2016, 87, 57-68.	11.4	67
36	<i>In Vivo</i> Imaging Shows Abnormal Function of Vascular Endothelial Growth Factor-Induced Vasculature. Human Gene Therapy, 2007, 18, 515-524.	2.7	66

#	Article	IF	Citations
37	Nanodevices in diagnostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 11-32.	6.1	64
38	Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Scientific Reports, 2017, 7, 7991.	3.3	64
39	Platelet-rich plasma: a biomimetic approach to enhancement of surgical wound healing. Journal of Surgical Research, 2017, 207, 33-44.	1.6	63
40	Engineering multi-stage nanovectors for controlled degradation andÂtunable release kinetics. Biomaterials, 2013, 34, 8469-8477.	11.4	62
41	Biomimetic collagenous scaffold to tune inflammation by targeting macrophages. Journal of Tissue Engineering, 2016, 7, 204173141562466.	5. 5	62
42	Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomaterials Science, 2020, 8, 333-341.	5.4	59
43	Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 627.	4.1	59
44	Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases. Nanoscale, 2017, 9, 14581-14591.	5.6	57
45	A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019, 9, 12263.	3. 3	56
46	Electrospun anti-inflammatory patch loaded with essential oils for wound healing. International Journal of Pharmaceutics, 2020, 577, 119067.	5.2	56
47	IL-4 Release from a Biomimetic Scaffold for the Temporally Controlled Modulation of Macrophage Response. Annals of Biomedical Engineering, 2016, 44, 2008-2019.	2.5	54
48	Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23441-23449.	8.0	51
49	Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale, 2019, 11, 13576-13586.	5.6	51
50	Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles. Molecular Imaging, 2011, 10, 7290.2011.00011.	1.4	50
51	Cell source determines the immunological impact of biomimetic nanoparticles. Biomaterials, 2016, 82, 168-177.	11.4	50
52	Enhancing Inflammation Targeting Using Tunable Leukocyte-Based Biomimetic Nanoparticles. ACS Nano, 2021, 15, 6326-6339.	14.6	49
53	Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat. Cancer Gene Therapy, 2003, 10, 64-74.	4.6	48
54	Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis. Small, 2016, 12, 4881-4893.	10.0	47

#	Article	IF	Citations
55	Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model. Acta Biomaterialia, 2017, 50, 165-177.	8.3	47
56	Tutorial: using nanoneedles for intracellular delivery. Nature Protocols, 2021, 16, 4539-4563.	12.0	47
57	PLGA-Mesoporous Silicon Microspheres for the <i>in Vivo</i> Controlled Temporospatial Delivery of Proteins. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16364-16373.	8.0	46
58	Investigating the Mechanobiology of Cancer Cell–ECM Interaction Through Collagen-Based 3D Scaffolds. Cellular and Molecular Bioengineering, 2017, 10, 223-234.	2.1	46
59	Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner. International Journal of Nanomedicine, 2017, Volume 12, 3547-3559.	6.7	46
60	Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Science Bulletin, 2012, 57, 3961-3971.	1.7	45
61	Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research and Therapy, 2015, 6, 203.	5.5	44
62	Short and Long Term, In Vitro and In Vivo Correlations of Cellular and Tissue Responses to Mesoporous Silicon Nanovectors. Small, 2013, 9, 1722-1733.	10.0	43
63	Non-invasive imaging of Young's modulus and Poisson's ratio in cancers in vivo. Scientific Reports, 2020, 10, 7266.	3.3	43
64	Smart cancer therapy with DNA origami. Nature Biotechnology, 2018, 36, 234-235.	17. 5	42
65	Multiscale Patterning of a Biomimetic Scaffold Integrated with Composite Microspheres. Small, 2014, 10, 3943-3953.	10.0	41
66	Fruit-Specific Expression of the Human Immunodeficiency Virus Type 1 Tat Gene in Tomato Plants and Its Immunogenic Potential in Mice. Vaccine Journal, 2007, 14, 685-692.	3.1	39
67	Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids and Surfaces B: Biointerfaces, 2015, 136, 694-703.	5.0	39
68	Cell membrane protein functionalization of nanoparticles as a new tumorâ€ŧargeting strategy. Clinical and Translational Medicine, 2019, 8, 8.	4.0	37
69	Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Scientific Reports, 2021, 11, 5107.	3.3	37
70	Proteomic Profiling of a Biomimetic Drug Delivery Platform. Current Drug Targets, 2015, 16, 1540-1547.	2.1	37
71	Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration. Journal of Functional Biomaterials, 2011, 2, 39-66.	4.4	36
72	Etoposide-loaded immunoliposomes as active targeting agents for GD2-positive malignancies. Cancer Biology and Therapy, 2014, 15, 851-861.	3.4	36

#	Article	IF	Citations
73	Nanoantibiotics: a new paradigm for the treatment of surgical infection. Nanomedicine, 2017, 12, 1319-1334.	3.3	35
74	A New Method for Estimating the Effective Poisson's Ratio in Ultrasound Poroelastography. IEEE Transactions on Medical Imaging, 2018, 37, 1178-1191.	8.9	35
75	The Emerging Role of Nanotechnology in Cell and Organ Transplantation. Transplantation, 2016, 100, 1629-1638.	1.0	33
76	Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue. Stem Cells Translational Medicine, 2017, 6, 2186-2196.	3.3	33
77	Biomimetic Nanoparticles Potentiate the Anti-Inflammatory Properties of Dexamethasone and Reduce the Cytokine Storm Syndrome: An Additional Weapon against COVID-19?. Nanomaterials, 2020, 10, 2301.	4.1	33
78	Agarose Surface Coating Influences Intracellular Accumulation and Enhances Payload Stability of a Nano-delivery System. Pharmaceutical Research, 2011, 28, 1520-1530.	3.5	32
79	Degradation and biocompatibility of multistage nanovectors in physiological systems. Journal of Biomedical Materials Research - Part A, 2014, 102, 3540-3549.	4.0	32
80	Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Molecular Imaging, 2011, 10, 56-68.	1.4	32
81	Osteoprogenitor Cells from Bone Marrow and Cortical Bone: Understanding How the Environment Affects Their Fate. Stem Cells and Development, 2015, 24, 1112-1123.	2.1	31
82	Immune tuning scaffold for the local induction of a pro-regenerative environment. Scientific Reports, 2017, 7, 17030.	3.3	31
83	Inhibition of Non Canonical HIV-1 Tat Secretion Through the Cellular Na + ,K + -ATPase Blocks HIV-1 Infection. EBioMedicine, 2017, 21, 170-181.	6.1	31
84	Enhancing Vascularization through the Controlled Release of Platelet-Derived Growth Factor-BB. ACS Applied Materials & Enhancing Vascularization through the Controlled Release of Platelet-Derived Growth Factor-BB.	8.0	30
85	The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation. Biomaterials, 2014, 35, 9824-9832.	11.4	29
86	p65BTK is a novel potential actionable target in KRAS-mutated/EGFR-wild type lung adenocarcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 260.	8.6	29
87	Platelet rich plasma enhances tissue incorporation of biologic mesh. Journal of Surgical Research, 2015, 199, 412-419.	1.6	28
88	Multistage Nanovectors Enhance the Delivery of Free and Encapsulated Drugs. Current Drug Targets, 2015, 16, 1582-1590.	2.1	28
89	Nanomedicine: Ushering in a new era of pain management. European Journal of Pain Supplements, 2011, 5, 317-322.	0.0	27
90	Vascular Inflammation: A Novel Access Route for Nanomedicine. Methodist DeBakey Cardiovascular Journal, 2021, 12, 169.	1.0	25

#	Article	IF	Citations
91	Decreased hernia recurrence using autologous platelet-rich plasma (PRP) with Stratticeâ,,¢ mesh in a rodent ventral hernia model. Surgical Endoscopy and Other Interventional Techniques, 2016, 30, 3239-3249.	2.4	25
92	Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization. ACS Applied Materials & Interfaces, 2018, 10, 44344-44353.	8.0	25
93	Phosphoprotein-based biomarkers as predictors for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18401-18411.	7.1	25
94	Physicochemical properties affect the synthesis, controlled delivery, degradation and pharmacokinetics of inorganic nanoporous materials. Nanomedicine, 2015, 10, 3057-3075.	3.3	24
95	Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake. Small, 2016, 12, 1479-1488.	10.0	23
96	Identification of a binding site of the human immunodeficiency virus envelope protein gp120 to neuronalâ€specific tubulin. Journal of Neurochemistry, 2016, 137, 287-298.	3.9	23
97	Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics, 2020, 12, 559.	4.5	23
98	Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Physics in Medicine and Biology, 2010, 55, 4839-4859.	3.0	22
99	Microfluidic enrichment of small proteins from complex biological mixture on nanoporous silica chip. Biomicrofluidics, 2011, 5, 013410.	2.4	22
100	Potential Avoidance of Adverse Analgesic Effects Using a Biologically "Smart―Hydrogel Capable of Controlled Bupivacaine Release. Journal of Pharmaceutical Sciences, 2014, 103, 3724-3732.	3.3	22
101	Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against <i>Staphylococcus aureus</i>). Journal of Tissue Engineering, 2014, 5, 204173141453657.	5.5	22
102	Localized inhibition of P2X7R at the spinal cord injury site improves neurogenic bladder dysfunction by decreasing urothelial P2X3R expression in rats. Life Sciences, 2017, 171, 60-67.	4.3	22
103	Inflammation and Cancer: In Medio Stat Nano. Current Medicinal Chemistry, 2018, 25, 4208-4223.	2.4	22
104	Nanotechnology in the Treatment of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2019, 25, 1871-1880.	1.9	22
105	In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11881-11891.	8.0	21
106	Endocytic Trafficking of HIV gp120 is Mediated by Dynamin and Plays a Role in gp120 Neurotoxicity. Journal of NeuroImmune Pharmacology, 2017, 12, 492-503.	4.1	21
107	Reproducible and Characterized Method for Ponatinib Encapsulation into Biomimetic Lipid Nanoparticles as a Platform for Multi-Tyrosine Kinase-Targeted Therapy. ACS Applied Bio Materials, 2020, 3, 6737-6745.	4.6	21
108	Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia, 2010, 6, 3448-3456.	8.3	20

#	Article	IF	Citations
109	Microfluidic interactions between red blood cells and drug carriers by image analysis techniques. Medical Engineering and Physics, 2016, 38, 17-23.	1.7	20
110	Bioinspired approaches for cancer nanotheranostics. Nanomedicine, 2017, 12, 5-7.	3.3	20
111	Nanotechnologies and Regenerative Medical Approaches for Space and Terrestrial Medicine. Aviation, Space, and Environmental Medicine, 2012, 83, 1025-1036.	0.5	19
112	Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. Journal of Tissue Engineering, 2016, 7, 204173141562466.	5.5	19
113	Infusion of iodine-based contrast agents into poly(p-dioxanone) as a radiopaque resorbable IVC filter. Journal of Materials Science: Materials in Medicine, 2015, 26, 124.	3.6	18
114	Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts. Journal of Tissue Engineering, 2016, 7, 204173141666119.	5.5	18
115	Optimizing cell seeding and retention in a threeâ€dimensional bioengineered cardiac ventricle: The twoâ€stage cellularization model. Biotechnology and Bioengineering, 2016, 113, 2275-2285.	3.3	18
116	Biocompatible PLGA-Mesoporous Silicon Microspheres for the Controlled Release of BMP-2 for Bone Augmentation. Pharmaceutics, 2020, 12, 118.	4.5	18
117	Evaluation of Cell Function Upon Nanovector Internalization. Small, 2013, 9, 1696-1702.	10.0	17
118	Clinical Predictive Circulating Peptides in Rectal Cancer Patients Treated with Neoadjuvant Chemoradiotherapy. Journal of Cellular Physiology, 2015, 230, 1822-1828.	4.1	17
119	Bioinspired Extracellular Vesicles: Lessons Learned From Nature for Biomedicine and Bioengineering. Nanomaterials, 2020, 10, 2172.	4.1	17
120	Patterning Biomaterials for the Spatiotemporal Delivery of Bioactive Molecules. Frontiers in Bioengineering and Biotechnology, 2016, 4, 45.	4.1	16
121	Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: A pilot study. Journal of Tissue Engineering, 2016, 7, 204173141562601.	5.5	16
122	Radiopaque Resorbable Inferior Vena Cava Filter Infused with Gold Nanoparticles. Scientific Reports, 2017, 7, 2147.	3.3	16
123	Biomimetic cellular vectors for enhancing drug delivery to the lungs. Scientific Reports, 2020, 10, 172.	3.3	16
124	Alterations of the Plasma Peptidome Profiling in Colorectal Cancer Progression. Journal of Cellular Physiology, 2016, 231, 915-925.	4.1	15
125	Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography. IEEE Transactions on Biomedical Engineering, 2020, 67, 1083-1096.	4.2	15
126	Non-Invasive Assessment of the Spatial and Temporal Distributions of Interstitial Fluid Pressure, Fluid Velocity and Fluid Flow in Cancers <i>In Vivo</i> . IEEE Access, 2021, 9, 89222-89233.	4.2	15

#	Article	IF	CITATIONS
127	Ultrasound elastography assessment of bone/soft tissue interface. Physics in Medicine and Biology, 2016, 61, 131-150.	3.0	14
128	Trends towards Biomimicry in Theranostics. Nanomaterials, 2018, 8, 637.	4.1	14
129	The design and fabrication of a threeâ€dimensional bioengineered open ventricle. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2206-2217.	3.4	13
130	Humanized Biomimetic Nanovesicles for Neuron Targeting. Advanced Science, 2021, 8, e2101437.	11.2	13
131	Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo. Advanced Healthcare Materials, 2022, 11, e2101127.	7.6	13
132	Fusion of the Human Immunodeficiency Virus Type 1 Tat Protein Transduction Domain to Thymidine Kinase Increases Bystander Effect and Induces Enhanced Tumor KillingIn Vivo. Human Gene Therapy, 2005, 16, 1389-1403.	2.7	12
133	Mesoporous silicon particles as intravascular drug delivery vectors: fabrication, inâ€vitro, and inâ€vivo assessments. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1826-1832.	0.8	12
134	Biomarker Signature Discovery from Mass Spectrometry Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 766-772.	3.0	12
135	Non-Invasive Imaging of Normalized Solid Stress in Cancers in Vivo. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-9.	3.7	12
136	Bioinspired Scaffold Action Under the Extreme Physiological Conditions of Simulated Space Flights: Osteogenesis Enhancing Under Microgravity. Frontiers in Bioengineering and Biotechnology, 2020, 8, 722.	4.1	12
137	Endosomal Escape of Polymerâ€Coated Silica Nanoparticles in Endothelial Cells. Small, 2020, 16, e1907693.	10.0	12
138	Innovative approaches to establish and characterize primary cultures: an ex vivo 3D system and the zebrafish model. Biology Open, 2016, 6, 133-140.	1.2	11
139	Ghee Butter as a Therapeutic Delivery System. Journal of Nanoscience and Nanotechnology, 2017, 17, 977-982.	0.9	11
140	A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo. Medical Image Analysis, 2021, 74, 102221.	11.6	11
141	A multifunctional nanostructured platform for localized sustained release of analgesics and antibiotics. European Journal of Pain Supplements, 2011, 5, 423-432.	0.0	10
142	Continuous wound infusion of local anesthetic and steroid after major abdominal surgery: study protocol for a randomized controlled trial. Trials, 2015, 16, 357.	1.6	10
143	Local Inhibition of Macrophage and Smooth Muscle Cell Proliferation to Suppress Plaque Progression. Methodist DeBakey Cardiovascular Journal, 2021, 12, 141.	1.0	10
144	Does the combination of erythropoietin and tapered oral corticosteroids improve recovery following iatrogenic nerve injury?. Injury, 2016, 47, 1819-1823.	1.7	10

#	Article	IF	Citations
145	Microfluidic Assembly of Liposomes with Tunable Size and Coloading Capabilities. Methods in Molecular Biology, 2018, 1792, 205-214.	0.9	10
146	A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography. IEEE Transactions on Medical Imaging, 2018, 37, 2704-2717.	8.9	10
147	Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting. Scientific Reports, 2020, 10, 16610.	3.3	10
148	Identification of ultrasound imaging markers to quantify long bone regeneration in a segmental tibial defect sheep model in vivo. Scientific Reports, 2020, 10, 13646.	3.3	10
149	Lineageâ€specific mechanisms and drivers of breast cancer chemoresistance revealed by 3D biomimetic culture. Molecular Oncology, 2022, 16, 921-939.	4.6	10
150	A New Class of Phantom Materials for Poroelastography Imaging Techniques. Ultrasound in Medicine and Biology, 2016, 42, 1230-1238.	1.5	9
151	Mesenchymal Stromal Cellâ€Mediated Treatment of Local and Systemic Inflammation through the Triggering of an Antiâ€Inflammatory Response. Advanced Functional Materials, 2021, 31, 2002997.	14.9	9
152	Addition of plateletâ€rich plasma supports immune modulation and improved mechanical integrity in Alloderm mesh for ventral hernia repair in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 3-13.	2.7	9
153	Crossâ€linking of porcine acellular dermal matrices negatively affects induced neovessel formation using plateletâ€rich plasma in a rat model of hernia repair. Wound Repair and Regeneration, 2017, 25, 98-108.	3.0	8
154	Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 44, 102567.	3.3	8
155	Plateletâ€rich plasma enhances mechanical strength of strattice in rat model of ventral hernia repair. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 634-647.	2.7	7
156	Characterization of ventral incisional hernia and repair using shear wave elastography. Journal of Surgical Research, 2017, 210, 244-252.	1.6	6
157	Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes. Frontiers in Bioengineering and Biotechnology, 2017, 5, 54.	4.1	6
158	Controlled Release of Small Molecules for Cardiac Differentiation of Pluripotent Stem Cells. Tissue Engineering - Part A, 2018, 24, 1798-1807.	3.1	6
159	Mimicking the Organic and Inorganic Composition of Anabolic Bone Enhances Human Mesenchymal Stem Cell Osteoinduction and Scaffold Mechanical Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 753.	4.1	6
160	Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes, 2021, 12, 605.	2.4	6
161	Porous Silicon Nanoneedles By Metal Assisted Chemical Etch for Intracellular Sensing and Delivery. ECS Transactions, 2015, 69, 63-68.	0.5	5
162	Ultrasound shear wave elastography effectively predicts integrity of ventral hernia repair using acellular dermal matrix augmented with platelet-rich plasma (PRP). Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 2802-2811.	2.4	5

#	Article	IF	Citations
163	Amniotic fluid allograft enhances the host response to ventral hernia repair using acellular dermal matrix. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 1092-1104.	2.7	5
164	In vivo imaging of radiopaque resorbable inferior vena cava filter infused with gold nanoparticles. , $2018,10576,.$		5
165	APCI1307K Mutations and Forkhead Box Gene (FOXO1A): Another Piece of an Interesting Correlation. International Journal of Biological Markers, 2012, 27, 13-19.	1.8	4
166	Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells. Journal of Tissue Engineering, 2016, 7, 204173141662976.	5.5	4
167	Assessment of the long bone inter-fragmentary gap size in ultrasound strain elastograms. Physics in Medicine and Biology, 2019, 64, 025014.	3.0	4
168	Diagnostic Devices for Circulating Biomarkers Detection and Quantification. Current Medicinal Chemistry, 2018, 25, 4304-4327.	2.4	4
169	Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method. Physics in Medicine and Biology, 2018, 63, 025035.	3.0	3
170	Helix-A peptide prevents gp120-mediated neuronal loss. Molecular Brain, 2019, 12, 61.	2.6	3
171	Immunomodulatory potential of mesenchymal stem cell role in diseases and therapies: A bioengineering prospective. Journal of Immunology and Regenerative Medicine, 2019, 4, 100017.	0.4	3
172	Modeling and Analysis of Ultrasound Elastographic Axial Strains for Spine Fracture Identification. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 898-909.	3.0	3
173	Improved Posterolateral Lumbar Spinal Fusion Using a Biomimetic, Nanocomposite Scaffold Augmented by Autologous Platelet-Rich Plasma. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622099.	4.1	3
174	LDL-Based Lipid Nanoparticle Derived for Blood Plasma Accumulates Preferentially in Atherosclerotic Plaque. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794676.	4.1	3
175	Increased use of surgical energy promotes methicillin-resistant Staphylococcus aureus colonization in rabbits following open ventral hernia mesh repair. Surgical Endoscopy and Other Interventional Techniques, 2017, 31, 852-860.	2.4	2
176	A Marriage Between Plastic Surgery and Nano-Medicine: Future Directions for Restoration in Mandibular Reconstruction and Skin Defects. Frontiers in Surgery, 2020, 7, 13.	1.4	2
177	Polyester Mesh Functionalization with Nitric Oxide-Releasing Silica Nanoparticles Reduces Early Methicillin-Resistant <i>Staphylococcus aureus</i> Contamination. Surgical Infections, 2021, 22, 910-922.	1.4	2
178	Acute Physiologic Effects of Performing Yoga in The Heat on Energy Expenditure, Range of Motion, and Inflammatory Biomarkers. International Journal of Exercise Science, 2020, 13, 802-817.	0.5	2
179	Platelet-Rich Plasma Enhances Mechanical Properties of Non-Crosslinked Acellular Dermal Matricies in Rat Model of Ventral Hernia Repair. Journal of the American College of Surgeons, 2015, 221, S76.	0.5	1
180	Thermally responsive hydrogel for atrial fibrillation related stroke prevention. Materials Today Bio, 2022, 14, 100240.	5. 5	1

#	Article	IF	CITATIONS
181	Osteoporosis in Microgravity Environments. , 0, , .		O
182	Mesoporous Silicon: Short and Long Term, In Vitro and In Vivo Correlations of Cellular and Tissue Responses to Mesoporous Silicon Nanovectors (Small 9-10/2013). Small, 2013, 9, 1721-1721.	10.0	0
183	Mission: Nano. Nature Nanotechnology, 2014, 9, 1064-1064.	31.5	O
184	MicroRNA and Drug Delivery. , 2014, , 359-403.		0
185	Tissue Engineering: Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake (Small 11/2016). Small, 2016, 12, 1394-1394.	10.0	O
186	Nanocomposites: Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis (Small 35/2016). Small, 2016, 12, 4910-4910.	10.0	0
187	Case Study: Application of LeukoLike Technology to Camouflage Nanoparticles from the Immune Recognition. Frontiers in Nanobiomedical Research, 2016, , 43-68.	0.1	O
188	Nanovectors: Mesenchymal Stromal Cellâ∈Mediated Treatment of Local and Systemic Inflammation through the Triggering of an Antiâ∈Inflammatory Response (Adv. Funct. Mater. 3/2021). Advanced Functional Materials, 2021, 31, 2170019.	14.9	0
189	Humanized Biomimetic Nanovesicles for Neuron Targeting (Adv. Sci. 19/2021). Advanced Science, 2021, 8, 2170125.	11.2	0
190	Fusion of the Human Immunodeficiency Virus Type 1 Tat Protein Transduction Domain to Thymidine Kinase Increases Bystander Effect and Induces Enhanced Tumor Killing In Vivo. Human Gene Therapy, 2005, .	2.7	0
191	Introduction to the World of Nanotechnology. , 2012, , 1-31.		0

Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage
Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo (Adv. Healthcare Mater.) Tj ETQq0 0 0 rgBT7. Overlock 10 Tf 50 2