
Yuan-Ying Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7749187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potent In Vitro Synergism of Fluconazole and Berberine Chloride against Clinical Isolates of Candida albicans Resistant to Fluconazole. Antimicrobial Agents and Chemotherapy, 2006, 50, 1096-1099.	1.4	150
2	The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Frontiers in Microbiology, 2019, 10, 691.	1.5	120
3	The synthesis, regulation, and functions of sterols in <i>Candida albicans</i> : Well-known but still lots to learn. Virulence, 2016, 7, 649-659.	1.8	92
4	Activity of Sanguinarine against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	69
5	Fluconazole Assists Berberine To Kill Fluconazole-Resistant Candida albicans. Antimicrobial Agents and Chemotherapy, 2013, 57, 6016-6027.	1.4	67
6	Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. International Journal of Antimicrobial Agents, 2009, 33, 258-263.	1.1	66
7	Tolerance to Caspofungin in Candida albicans Is Associated with at Least Three Distinctive Mechanisms That Govern Expression of <i>FKS</i> Genes and Cell Wall Remodeling. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	64
8	In Vitro and in Vivo Antifungal Activities of the Eight Steroid Saponins from Tribulus terrestris L. with Potent Activity against Fluconazole-Resistant Fungal. Biological and Pharmaceutical Bulletin, 2005, 28, 2211-2215.	0.6	58
9	Innate immune cell response upon <i>Candida albicans</i> infection. Virulence, 2016, 7, 512-526.	1.8	55
10	Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. European Journal of Medicinal Chemistry, 2018, 143, 1840-1846.	2.6	55
11	The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3098-3102.	1.0	53
12	E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor–mediated antifungal innate immunity. Journal of Experimental Medicine, 2016, 213, 1555-1570.	4.2	48
13	Potent <i>In Vitro</i> Synergism of Fluconazole and Osthole against Fluconazole-Resistant Candida albicans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	39
14	Design, synthesis, and in vitro evaluation of novel antifungal triazoles. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2171-2173.	1.0	38
15	Baicalein induces programmed cell death in Candida albicans. Journal of Microbiology and Biotechnology, 2009, 19, 803-9.	0.9	34
16	Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms. Molecules, 2015, 20, 17913-17928.	1.7	32
17	DNA microarray analysis of fluconazole resistance in a laboratory <italic>Candida albicans</italic> strain. Acta Biochimica Et Biophysica Sinica, 2008, 40, 1048-1060.	0.9	28
18	The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine, 2017, 35, 5786-5793.	1.7	28

YUAN-YING JIANG

#	Article	IF	CITATIONS
19	Triazole derivatives with improved in vitro antifungal activity over azole drugs. Drug Design, Development and Therapy, 2014, 8, 383.	2.0	25
20	Antifungal activity of <i>Rubus chingii</i> extract combined with fluconazole against fluconazoleâ€resistant <i>Candida albicans</i> . Microbiology and Immunology, 2016, 60, 82-92.	0.7	25
21	ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. International Journal of Medical Microbiology, 2019, 309, 151330.	1.5	24
22	Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC "click" chemistry as potential anticancer agents. Drug Design, Development and Therapy, 2014, 8, 1047.	2.0	23
23	Trisomy of chromosome R confers resistance to triazoles in Candida albicans. Medical Mycology, 2015, 53, 302-309.	0.3	23
24	The structure and retrotransposition mechanism of LTR-retrotransposons in the asexual yeast <i>Candida albicans</i> . Virulence, 2014, 5, 655-664.	1.8	22
25	Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Frontiers in Cellular and Infection Microbiology, 2017, 7, 491.	1.8	22
26	The non-Geldanamycin Hsp90 inhibitors enhanced the antifungal activity of fluconazole. American Journal of Translational Research (discontinued), 2015, 7, 2589-602.	0.0	21
27	Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin againstCandida albicans. Emerging Microbes and Infections, 2016, 5, 1-6.	3.0	19
28	Effect of loureirin A against Candida albicans biofilms. Chinese Journal of Natural Medicines, 2019, 17, 616-623.	0.7	19
29	Enhancement of the antibiofilm activity of amphotericin B by polyamine biosynthesis inhibitors. International Journal of Antimicrobial Agents, 2015, 46, 45-52.	1.1	18
30	Discovery of simplified sampangine derivatives as novel fungal biofilm inhibitors. European Journal of Medicinal Chemistry, 2018, 143, 1510-1523.	2.6	18
31	Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives containing the 1,2,3-triazole group. RSC Advances, 2013, 3, 13486.	1.7	17
32	Molecular genetic techniques for gene manipulation inCandida albicans. Virulence, 2014, 5, 507-520.	1.8	16
33	Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Design, Development and Therapy, 2015, 9, 1459.	2.0	16
34	Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	16
35	The Structure-Activity Relationship of Pterostilbene Against Candida albicans Biofilms. Molecules, 2017, 22, 360.	1.7	13
36	<i>SDH2</i> is involved in proper hypha formation and virulence in <i>Candida albicans</i> . Future Microbiology, 2018, 13, 1141-1156.	1.0	13

YUAN-YING JIANG

#	Article	IF	CITATIONS
37	Lysine enhances the effect of amphotericin B against <italic>Candida albicans in vitro</italic> . Acta Biochimica Et Biophysica Sinica, 2016, 48, 182-193.	0.9	12
38	The putative ABC transporter encoded by the orf19.4531 plays a role in the sensitivity of <i>Candida albicans</i> cells to azole antifungal drugs. FEMS Yeast Research, 2016, 16, fow024.	1.1	11
39	Synthesis and Biological Evaluation of Novel 2â€Aminonicotinamide Derivatives as Antifungal Agents. ChemMedChem, 2017, 12, 319-326.	1.6	10
40	Antifungal activity of osthol <i>in vitro</i> and enhancement <i>in vivo</i> through Eudragit S100 nanocarriers. Virulence, 2018, 9, 555-562.	1.8	9
41	Histone acetyltransferase encoded byNGC1is required for morphological conversion and virulence ofCandida albicans. Future Microbiology, 2017, 12, 1497-1510.	1.0	8
42	NSG2 (ORF19.273) Encoding Protein Controls Sensitivity of Candida albicans to Azoles through Regulating the Synthesis of C14-Methylated Sterols. Frontiers in Microbiology, 2018, 9, 218.	1.5	8
43	Antifungal Activity of the Ethanol Extract from <i>Flos Rosae Chinensis</i> with Activity against Fluconazole-Resistant Clinical <i>Candida</i> . Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	0.5	7
44	Structural features and mechanism of translocation of non-LTR retrotransposons in <i>Candida albicans</i> . Virulence, 2014, 5, 245-252.	1.8	6
45	Loss of RPS41 but not its paralog RPS42 results in altered growth, filamentation and transcriptome changes in Candida albicans. Fungal Genetics and Biology, 2015, 80, 31-42.	0.9	6
46	Design, synthesis, and SAR study of 3-(benzo[d][1,3]dioxol-5-yl)- N -benzylpropanamide as novel potent synergists against fluconazole-resistant Candida albicans. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4571-4575.	1.0	6
47	The Role of Mms22p in DNA Damage Response in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2567-2578.	0.8	4
48	TOP2 gene disruption reduces drug susceptibility by increasing intracellular ergosterol biosynthesis in Candida albicans. Journal of Medical Microbiology, 2010, 59, 797-803.	0.7	3
49	Roles of RPS41 in Biofilm Formation, Virulence, and Hydrogen Peroxide Sensitivity in Candida albicans. Current Microbiology, 2016, 72, 783-787.	1.0	3
50	InsP3R-SEC5 interaction on phagosomes modulates innate immunity to Candida albicans by promoting cytosolic Ca2+ elevation and TBK1 activity. BMC Biology, 2018, 16, 46.	1.7	3
51	Identification of 3′,4′-Dimethoxy Flavonol-3-β-d-Glucopyranoside Metabolites in Rats by Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry. Molecules, 2016, 21, 470.	1.7	2
52	Rapid determination of 3′, 4′-dimethoxy flavonol-3-β-d-glucopyranoside in rat plasma by LC-MS/MS method followed by protein precipitation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 47-55.	1.2	1