Cuiping Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748809/publications.pdf Version: 2024-02-01

CUUDING HAN

#	Article	IF	CITATIONS
1	A Comparative Investigation of Single Crystal and Polycrystalline Niâ€Rich NCMs as Cathodes for Lithiumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	23
2	Smart construction of multifunctional Li1.5Al0.5Ce1.5(PO4)3 Li intermediate interfaces for solid-state batteries. Energy Storage Materials, 2022, 46, 68-75.	9.5	34
3	Ether–Water Hybrid Electrolyte Contributing to Excellent Mg Ion Storage in Layered Sodium Vanadate. ACS Nano, 2022, 16, 6093-6102.	7.3	54
4	The magnetohydrodynamic effect enables a dendrite-free Zn anode in alkaline electrolytes. Journal of Materials Chemistry A, 2022, 10, 11971-11979.	5.2	24
5	H ₂ â€Inhibited Organic Anodes for Fast and Longâ€Life Aqueous Aluminum Ion Batteries with a 3.5â€Month Calendar Life. Small, 2022, 18, e2200463.	5.2	5
6	Conjugated cobalt polyphthalocyanine with defective π-π extended structure for enhanced rechargeable li-oxygen batteries. Chemical Engineering Journal, 2022, 444, 136544.	6.6	7
7	Identical cut-off voltage <i>versus</i> equivalent capacity: an objective evaluation of the impact of dopants in layered oxide cathodes. Journal of Materials Chemistry A, 2021, 9, 11219-11227.	5.2	12
8	Graphene-Based Materials with Tailored Nanostructures for Lithium-Ion Batteries. , 2021, , 473-490.		0
9	Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries. Energy Storage Materials, 2021, 36, 427-434.	9.5	92
10	Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nature Communications, 2021, 12, 2400.	5.8	107
11	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4â^' to Al3+ and an electrochromic Al ion battery. Energy Storage Materials, 2021, 39, 412-418.	9.5	52
12	Highâ€Rate Aqueous Aluminumâ€lon Batteries Enabled by Confined Iodine Conversion Chemistry. Small Methods, 2021, 5, e2100611.	4.6	26
13	Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries. Materials Today Physics, 2021, 21, 100486.	2.9	29
14	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
15	Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries. Journal of Energy Chemistry, 2021, 62, 538-545.	7.1	23
16	Promoting the reversibility of lithium ion/lithium metal hybrid graphite anode by regulating solid electrolyte interface. Nano Energy, 2021, 90, 106510.	8.2	20
17	A green water-induced spinel heterostructure interface enabling high performance lithium and manganese rich oxides. Journal of Materials Chemistry A, 2021, 9, 20576-20584.	5.2	3
18	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	5.2	26

CUIPING HAN

#	Article	IF	CITATIONS
19	Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. Energy and Environmental Science, 2021, 14, 3599-3608.	15.6	49
20	Synthesis design of a 3D interfacial structure for highly reversible lithium deposition. Journal of Materials Chemistry A, 2021, 9, 25004-25012.	5.2	6
21	Hybrid Electrolyte with Dualâ€Anionâ€Aggregated Solvation Sheath for Stabilizing Highâ€Voltage Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2007945.	11.1	130
22	Conductive Polyacrylic Acid-Polyaniline as a Multifunctional Binder for Stable Organic Quinone Electrodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39630-39638.	4.0	37
23	Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77, 105165.	8.2	65
24	Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Storage Materials, 2020, 31, 451-458.	9.5	29
25	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90
26	Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28, 264-292.	9.5	106
27	Selfâ€Healing Materials for Energyâ€&torage Devices. Advanced Functional Materials, 2020, 30, 1909912.	7.8	121
28	Al–Si Alloy as a Diffusion Barrier for GeTe-Based Thermoelectric Legs with High Interfacial Reliability and Mechanical Strength. ACS Applied Materials & Interfaces, 2020, 12, 18562-18569.	4.0	23
29	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 10479-10489.	4.0	57
30	Crystallized lithium titanate nanosheets prepared <i>via</i> spark plasma sintering for ultra-high rate lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 455-460.	5.2	26
31	Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 2019, 62, 550-587.	8.2	817
32	Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. Journal of Materials Chemistry A, 2019, 7, 23378-23415.	5.2	248
33	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 15646-15655.	4.0	43
34	Constructing Effective Interfaces for Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Pellets To Achieve Room-Temperature Hybrid Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019. 11. 9911-9918	4.0	77
35	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources, 2018, 389, 120-134.	4.0	359
36	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy and Environmental Science, 2018, 11, 941-951.	15.6	731

CUIPING HAN

#	Article	IF	CITATIONS
37	Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon, 2018, 129, 667-673.	5.4	58
38	The different Li/Na ion storage mechanisms of nano Sb 2 O 3 anchored on graphene. Journal of Power Sources, 2018, 385, 114-121.	4.0	41
39	Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon, 2018, 127, 459-468.	5.4	123
40	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€Sulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	10.2	147
41	Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305.	5.4	88
42	Electrospun Nâ€Đoped Hierarchical Porous Carbon Nanofiber with Improved Degree of Graphitization for Highâ€Performance Lithium Ion Capacitor. Chemistry - A European Journal, 2018, 24, 10460-10467.	1.7	55
43	Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 14797-14804.	5.2	103
44	Carbon coated MoS2 nanosheets vertically grown on carbon cloth as efficient anode for high-performance sodium ion hybrid capacitors. Electrochimica Acta, 2018, 283, 36-44.	2.6	50
45	Nanostructured Anode Materials for Nonâ€aqueous Lithium Ion Hybrid Capacitors. Energy and Environmental Materials, 2018, 1, 75-87.	7.3	97
46	Sequentially-processed Na3V2(PO4)3 for cathode material of aprotic sodium ion battery. Nano Energy, 2018, 50, 323-330.	8.2	43
47	NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066.	5.2	149
48	A review of gassing behavior in Li ₄ Ti ₅ O ₁₂ -based lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 6368-6381.	5.2	157
49	Germaniumbasierte Nanomaterialien für wiederaufladbare Batterien. Angewandte Chemie, 2016, 128, 8028-8054.	1.6	5
50	Germaniumâ€Based Nanomaterials for Rechargeable Batteries. Angewandte Chemie - International Edition, 2016, 55, 7898-7922.	7.2	162
51	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Interfaces, 2016, 8, 18788-18796.	4.0	51
52	<i>In-Situ</i> Crafting of ZnFe ₂ O ₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials. ACS Nano, 2016, 10, 2728-2735.	7.3	192
53	A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon, 2016, 98, 582-591.	5.4	128
54	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221

CUIPING HAN

#	Article	IF	CITATIONS
55	Lithiumâ€lon Batteries: Grapheneâ€Containing Nanomaterials for Lithiumâ€lon Batteries (Adv. Energy Mater.) Tj	ETQq1 10.2	1 0.784314 rg
56	Grapheneâ€Containing Nanomaterials for Lithiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1500400.	10.2	184
57	Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating. Electrochimica Acta, 2015, 157, 266-273.	2.6	51
58	A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. Journal of Power Sources, 2015, 282, 174-178.	4.0	144
59	In situ synthesis of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics. Journal of Materials Science: Materials in Electronics, 2015, 26, 2457-2465.	1.1	4
60	Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon, 2015, 87, 347-356.	5.4	131
61	Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1439-A1444.	1.3	164
62	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	3.2	142
63	Electrospinning-derived [C/Fe3O4]@C coaxial nanocables with tuned magnetism, electrical conduction and highly efficient adsorption trifunctionality. Journal of Materials Science: Materials in Electronics, 2015, 26, 8054-8064.	1.1	9
64	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	5.2	71
65	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Doped Carbon enable Highâ€Rate Lithiumâ€lon Batteries. ChemSusChem, 2014, 7, 2567-2574.	3.6	55
66	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	15.6	323