
Thomas Wernberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
2	A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 2016, 141, 227-238.	1.5	1,081
3	Longer and more frequent marine heatwaves over the past century. Nature Communications, 2018, 9, 1324.	5.8	1,081
4	Climate-driven regime shift of a temperate marine ecosystem. Science, 2016, 353, 169-172.	6.0	951
5	An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 2013, 3, 78-82.	8.1	925
6	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	8.1	883
7	The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140846.	1.2	679
8	Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13785-13790.	3.3	511
9	Categorizing and Naming Marine Heatwaves. Oceanography, 2018, 31, .	0.5	368
10	A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology, 2012, 18, 1491-1498.	4.2	355
11	Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 2011, 400, 7-16.	0.7	350
12	Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. BioScience, 2018, 68, 64-76.	2.2	348
13	A global assessment of marine heatwaves and their drivers. Nature Communications, 2019, 10, 2624.	5.8	337
14	Species traits and climate velocity explain geographic range shifts in an oceanâ€warming hotspot. Ecology Letters, 2015, 18, 944-953.	3.0	334
15	Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122829.	1.2	330
16	Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 2018, 8, 579-587.	8.1	330
17	Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 2019, 6, .	1.2	300
18	Seaweed Communities in Retreat from Ocean Warming. Current Biology, 2011, 21, 1828-1832.	1.8	297

#	Article	IF	CITATIONS
19	The 'Great Southern Reef': social, ecological and economic value of Australia's neglected kelp forests. Marine and Freshwater Research, 2016, 67, 47.	0.7	285
20	Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecology Letters, 2010, 13, 685-694.	3.0	282
21	Habitat Cascades: The Conceptual Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification. Integrative and Comparative Biology, 2010, 50, 158-175.	0.9	216
22	Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 2014, 26, 27-38.	3.6	207
23	Status and Trends for the World's Kelp Forests. , 2019, , 57-78.		198
24	Keeping pace with marine heatwaves. Nature Reviews Earth & Environment, 2020, 1, 482-493.	12.2	175
25	Continentalâ€scale variation in seaweed hostâ€associated bacterial communities is a function of host condition, not geography. Environmental Microbiology, 2015, 17, 4078-4088.	1.8	160
26	Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 2020, 10, 19359.	1.6	155
27	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
28	Tropical herbivores provide resilience to a climateâ€mediated phase shift on temperate reefs. Ecology Letters, 2015, 18, 714-723.	3.0	142
29	Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Marine Ecology - Progress Series, 2000, 207, 79-88.	0.9	142
30	Genetic diversity and kelp forest vulnerability to climatic stress. Scientific Reports, 2018, 8, 1851.	1.6	138
31	Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Marine Ecology - Progress Series, 2009, 387, 27-37.	0.9	132
32	Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Functional Ecology, 2019, 33, 1000-1013.	1.7	131
33	Distribution models predict large contractions of habitatâ€forming seaweeds in response to ocean warming. Diversity and Distributions, 2018, 24, 1350-1366.	1.9	129
34	PHYSIOLOGICAL RESPONSES OF <i>ECKLONIA RADIATA</i> (LAMINARIALES) TO A LATITUDINAL GRADIENT IN OCEAN TEMPERATURE ¹ . Journal of Phycology, 2009, 45, 91-99.	1.0	128
35	Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows. BioScience, 2016, 66, 938-948.	2.2	128
36	Central and rear-edge populations can be equally vulnerable to warming. Nature Communications, 2015, 6, 10280.	5.8	125

#	Article	IF	CITATIONS
37	Differences in kelp morphology between wave sheltered and exposed localities: morphologically plastic or fixed traits?. Marine Biology, 2006, 148, 755-767.	0.7	124
38	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	1.2	123
39	Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180550.	1.8	118
40	Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Diversity and Distributions, 2003, 9, 427-441.	1.9	117
41	Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Marine Ecology - Progress Series, 2014, 495, 39-47.	0.9	117
42	Kelp Forest Restoration in Australia. Frontiers in Marine Science, 2020, 7, .	1.2	115
43	Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science, 2021, 374, eabj3593.	6.0	115
44	Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquatic Ecology, 2005, 39, 419-430.	0.7	110
45	The renaissance of Odum's outwelling hypothesis in 'Blue Carbon' science. Estuarine, Coastal and Shelf Science, 2021, 255, 107361.	0.9	107
46	Arctic kelp forests: Diversity, resilience and future. Global and Planetary Change, 2019, 172, 1-14.	1.6	105
47	Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia, 2008, 157, 327-335.	0.9	101
48	Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Scientific Reports, 2018, 8, 13094.	1.6	101
49	EVIDENCE FOR IMPACTS OF NONINDIGENOUS MACROALGAE: A METAâ€ANALYSIS OF EXPERIMENTAL FIELD STUDIES ¹ . Journal of Phycology, 2009, 45, 812-819.	1.0	100
50	Resistance, Extinction, and Everything in Between – The Diverse Responses of Seaweeds to Marine Heatwaves. Frontiers in Marine Science, 2019, 6, .	1.2	98
51	Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia, 2006, 147, 692-701.	0.9	95
52	A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps. PLoS ONE, 2012, 7, e28595.	1.1	93
53	Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology, 2011, 400, 264-271.	0.7	87
54	Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Scientific Reports, 2020, 10, 13388.	1.6	86

#	Article	IF	CITATIONS
55	Marine Heatwave Drives Cryptic Loss of Genetic Diversity in Underwater Forests. Current Biology, 2020, 30, 1199-1206.e2.	1.8	86
56	Secondary foundation species enhance biodiversity. Nature Ecology and Evolution, 2018, 2, 634-639.	3.4	85
57	Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia, 2018, 187, 291-304.	0.9	85
58	The effect of wave exposure on the morphology of Ecklonia radiata. Aquatic Botany, 2005, 83, 61-70.	0.8	83
59	Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate. Marine Ecology - Progress Series, 2012, 466, 9-19.	0.9	83
60	Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecology and Evolution, 2017, 7, 8406-8418.	0.8	83
61	A framework to study the context-dependent impacts of marine invasions. Journal of Experimental Marine Biology and Ecology, 2011, 400, 322-327.	0.7	79
62	Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnology and Oceanography, 2014, 59, 156-166.	1.6	77
63	Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Progress in Oceanography, 2017, 151, 189-205.	1.5	76
64	Form and function of tropical macroalgal reefs in the Anthropocene. Functional Ecology, 2019, 33, 989-999.	1.7	76
65	Biology and Ecology of the Globally Significant Kelp Ecklonia radiata. , 2019, , 265-323.		75
66	Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography, 2022, 31, 1422-1439.	2.7	75
67	A broad framework to organize and compare ecological invasion impacts. Environmental Research, 2011, 111, 899-908.	3.7	74
68	Physiological responses of habitatâ€forming seaweeds to increasing temperatures. Limnology and Oceanography, 2016, 61, 2180-2190.	1.6	74
69	Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Marine Biology, 2003, 143, 47-55.	0.7	73
70	The rise of <i>Laminaria ochroleuca</i> in the Western English Channel (<scp>UK</scp>) and comparisons with its competitor and assemblage dominant <i>Laminaria hyperborea</i> . Marine Ecology, 2015, 36, 1033-1044.	0.4	73
71	Restore or Redefine: Future Trajectories for Restoration. Frontiers in Marine Science, 2020, 7, .	1.2	73
72	Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgoland Marine Research, 2004, 58, 154-161.	1.3	70

#	Article	IF	CITATIONS
73	The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata. Botanica Marina, 2004, 47, .	0.6	69
74	Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity. Journal of Sea Research, 2008, 59, 237-248.	0.6	66
75	Substantial blue carbon in overlooked Australian kelp forests. Scientific Reports, 2020, 10, 12341.	1.6	66
76	Contrasting mechanisms of dislodgement and erosion contribute to production of kelp detritus. Limnology and Oceanography, 2013, 58, 1680-1688.	1.6	63
77	Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark—Implications of species replacements on turnover rates. Aquatic Botany, 2005, 83, 31-47.	0.8	62
78	Assemblage turnover and taxonomic sufficiency of subtidal macroalgae at multiple spatial scales. Journal of Experimental Marine Biology and Ecology, 2010, 384, 76-86.	0.7	61
79	Australia's marine biogeography revisited: Back to the future?. Austral Ecology, 2010, 35, 988-992.	0.7	60
80	Canopy interactions and physical stress gradients in subtidal communities. Ecology Letters, 2015, 18, 677-686.	3.0	59
81	Short-term temporal dynamics of algal species in a subtidal kelp bed in relation to changes in environmental conditions and canopy biomass. Estuarine, Coastal and Shelf Science, 2008, 76, 265-272.	0.9	58
82	Particle grazing efficiency and specific growth efficiency of the rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology, 1997, 215, 217-233.	0.7	57
83	Missing the marine forest for the trees. Marine Ecology - Progress Series, 2019, 612, 209-215.	0.9	56
84	Green gravel: a novel restoration tool to combat kelp forest decline. Scientific Reports, 2020, 10, 3983.	1.6	55
85	The effects of light and thallus scour from Ecklonia radiata canopy on an associated foliose algal assemblage: the importance of photoacclimation. Marine Biology, 2004, 144, 1019-1027.	0.7	54
86	Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Marine Ecology - Progress Series, 2017, 568, 17-30.	0.9	54
87	Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Scientific Reports, 2017, 7, 820.	1.6	53
88	Detrital carbon production and export in high latitude kelp forests. Oecologia, 2020, 192, 227-239.	0.9	53
89	Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Diversity and Distributions, 2015, 21, 13-22.	1.9	52
90	Genetic tropicalisation following a marine heatwave. Scientific Reports, 2020, 10, 12726.	1.6	50

#	Article	IF	CITATIONS
91	Spatio-temporal distribution patterns of the invasive macroalga Sargassum muticum within a Danish Sargassum-bed. Helgoland Marine Research, 2006, 60, 50-58.	1.3	49
92	Expansion of corals on temperate reefs: direct and indirect effects of marine heatwaves. Coral Reefs, 2017, 36, 947-956.	0.9	48
93	A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov Molecular Phylogenetics and Evolution, 2016, 101, 359-372.	1.2	45
94	The Silver Lining of Extreme Events. Trends in Ecology and Evolution, 2020, 35, 1065-1067.	4.2	45
95	Herbivory drives kelp recruits into â€~hiding' in a warm ocean climate. Marine Ecology - Progress Series, 2015, 536, 1-9.	0.9	45
96	Comparative Phenology of Sargassum muticum and Halidrys siliquosa (Phaeophyceae: Fucales) in Limfjorden, Denmark. Botanica Marina, 2001, 44, .	0.6	44
97	Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environmental Biology of Fishes, 2009, 86, 311-319.	0.4	44
98	Reproductive seasonality and early life temperature sensitivity reflect vulnerability of a seaweed undergoing range reduction. Marine Ecology - Progress Series, 2014, 495, 119-129.	0.9	43
99	Holdfast aggregation in relation to morphology, age, attachment and drag for the kelp Ecklonia radiata. Aquatic Botany, 2005, 82, 168-180.	0.8	42
100	Population structure of turbinid gastropods on wave-exposed subtidal reefs: effects of density, body size and algae on grazing behaviour. Marine Ecology - Progress Series, 2008, 362, 169-179.	0.9	42
101	Miniview: What affects the forces required to break or dislodge macroalgae?. European Journal of Phycology, 2005, 40, 139-148.	0.9	41
102	The spatial arrangement of reefs alters the ecological patterns of fauna between interspersed algal habitats. Estuarine, Coastal and Shelf Science, 2008, 78, 774-782.	0.9	40
103	Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Marine Biology, 2013, 160, 119-126.	0.7	40
104	A molecular investigation of the genus <i>Ecklonia</i> (Phaeophyceae, Laminariales) with special focus on the Southern Hemisphere. Journal of Phycology, 2015, 51, 236-246.	1.0	40
105	Using Propagules to Restore Coastal Marine Ecosystems. Frontiers in Marine Science, 2020, 7, .	1.2	40
106	Genotype–Environment mismatch of kelp forests under climate change. Molecular Ecology, 2021, 30, 3730-3746.	2.0	39
107	The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds. PLoS ONE, 2013, 8, e80168.	1.1	39
108	Ecological observations associated with an anomalous warming event at the Houtman Abrolhos Islands, Western Australia. Coral Reefs, 2012, 31, 441-441.	0.9	38

#	Article	IF	CITATIONS
109	Biogeographic variation in temperature drives performance of kelp gametophytes during warming. Marine Ecology - Progress Series, 2014, 513, 85-96.	0.9	38
110	Exploring the Influence of Temperature on Aspects of the Reproductive Phenology of Temperate Seaweeds. Frontiers in Marine Science, 2018, 5, .	1.2	38
111	Homogenization and miniaturization of habitat structure in temperate marine forests. Global Change Biology, 2021, 27, 5262-5275.	4.2	38
112	Environmental Influences on Kelp Performance across the Reproductive Period: An Ecological Trade-Off between Gametophyte Survival and Growth?. PLoS ONE, 2013, 8, e65310.	1.1	37
113	Canopy facilitates seaweed recruitment on subtidal temperate reefs. Journal of Ecology, 2014, 102, 1462-1470.	1.9	37
114	Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts?. NeoBiota, 0, 22, 1-22.	1.0	37
115	Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming. PLoS ONE, 2015, 10, e0143031.	1.1	36
116	Editorial: Advances in Understanding Marine Heatwaves and Their Impacts. Frontiers in Marine Science, 2020, 7, .	1.2	36
117	Carbon sequestration potential increased by incomplete anaerobic decomposition of kelp detritus. Marine Ecology - Progress Series, 2021, 660, 53-67.	0.9	35
118	Turning on the Heat: Ecological Response to Simulated Warming in the Sea. PLoS ONE, 2011, 6, e16050.	1.1	35
119	Grazers extend blue carbon transfer by slowing sinking speeds of kelp detritus. Scientific Reports, 2018, 8, 17180.	1.6	34
120	Testing the â€~abundant centre' hypothesis on endemic reef fishes in south-western Australia. Marine Ecology - Progress Series, 2008, 372, 225-230.	0.9	34
121	CONTRIBUTION OF TEMPORAL AND SPATIAL COMPONENTS TO MORPHOLOGICAL VARIATION IN THE KELP ECKLONIA (LAMINARIALES)1. Journal of Phycology, 2010, 46, 153-161.	1.0	33
122	To include or not to include (the invader in community analyses)? That is the question. Biological Invasions, 2016, 18, 1515-1521.	1.2	33
123	Non-native Seaweeds Drive Changes in Marine Coastal Communities Around the World. , 2016, , 147-185.		32
124	The relative influence of local to regional drivers of variation in reef fishes. Journal of Fish Biology, 2011, 79, 217-234.	0.7	31
125	Novel crab predator causes marine ecosystem regime shift. Scientific Reports, 2018, 8, 4956.	1.6	31
126	Wounded kelps: patterns and susceptibility to breakage. Aquatic Biology, 2012, 17, 223-233.	0.5	30

8

#	Article	IF	CITATIONS
127	Proximity to rocky reefs alters the balance between positive and negative effects on seagrass fauna. Marine Ecology - Progress Series, 2010, 405, 175-186.	0.9	30
128	Marine Heatwave Drives Collapse of Kelp Forests in Western Australia. Ecological Studies, 2021, , 325-343.	0.4	29
129	Proximity to reef influences density of small predatory fishes, while type of seagrass influences intensity of their predation on crabs. Marine Ecology - Progress Series, 2007, 340, 235-243.	0.9	29
130	Size, not morphology, determines hydrodynamic performance of a kelp during peak flow. Marine Biology, 2013, 160, 843-851.	0.7	27
131	Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research, 2018, 25, 16640-16651.	2.7	27
132	Stable isotopes reveal a consistent consumer–diet relationship across hundreds of kilometres. Marine Ecology - Progress Series, 2010, 403, 53-61.	0.9	26
133	Community development on subtidal temperate reefs: the influences of wave energy and the stochastic recruitment of a dominant kelp. Marine Biology, 2011, 158, 1757-1766.	0.7	26
134	Harmful algae are not harmful to everyone. Harmful Algae, 2012, 16, 74-80.	2.2	26
135	Carbon export is facilitated by sea urchins transforming kelp detritus. Oecologia, 2020, 192, 213-225.	0.9	26
136	Alien macroalgae in Denmark – a broad-scale national perspective. Marine Biology Research, 2007, 3, 61-72.	0.3	25
137	Large scale variability in the structure of sessile invertebrate assemblages in artificial habitats reveals the importance of local-scale processes. Journal of Experimental Marine Biology and Ecology, 2017, 494, 10-19.	0.7	25
138	Drift algae, an invasive snail and elevated temperature reduce ecological performance of a warm-temperate seagrass, through additive effects. Marine Ecology - Progress Series, 2012, 450, 67-80.	0.9	23
139	Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia. Marine Biology, 2017, 164, 1.	0.7	22
140	Ecological performance and possible origin of a ubiquitous but under-studied gastropod. Estuarine, Coastal and Shelf Science, 2010, 87, 501-509.	0.9	21
141	Priming of Marine Macrophytes for Enhanced Restoration Success and Food Security in Future Oceans. Frontiers in Marine Science, 2021, 8, .	1.2	21
142	Heterogeneity within and among co-occurring foundation species increases biodiversity. Nature Communications, 2022, 13, 581.	5.8	21
143	Subtidal macroalgal richness, diversity and turnover, at multiple spatial scales, along the southwestern Australian coastline. Estuarine, Coastal and Shelf Science, 2011, 91, 224-231.	0.9	20
144	The Dynamic Biogeography of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds. , 2016, , 63-93.		20

#	Article	IF	CITATIONS
145	High Latitude Corals Tolerate Severe Cold Spell. Frontiers in Marine Science, 2018, 5, .	1.2	20
146	Cast adrift: Physiology and dispersal of benthic Sargassum spinuligerum in surface rafts. Limnology and Oceanography, 2019, 64, 526-540.	1.6	20
147	Kelp-carbon uptake by Arctic deep-sea food webs plays a noticeable role in maintaining ecosystem structural and functional traits. Journal of Marine Systems, 2020, 203, 103268.	0.9	19
148	Genotypic variation in response to extreme events may facilitate kelp adaptation under future climates. Marine Ecology - Progress Series, 2021, 672, 111-121.	0.9	19
149	Phenological decoupling of mortality from wave forcing in kelp beds. Ecology, 2015, 96, 850-861.	1.5	18
150	Broad-scale patterns of abundance of non-indigenous soft-bottom invertebrates in Denmark. Helgoland Marine Research, 2009, 63, 159-167.	1.3	17
151	Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Functional Ecology, 2022, 36, 659-673.	1.7	17
152	Complex plant–herbivore–predator interactions in a brackish water seaweed habitat. Journal of Experimental Marine Biology and Ecology, 2013, 449, 51-56.	0.7	16
153	Spatial and temporal variation of kelp forests and associated macroalgal assemblages along the Portuguese coast. Marine and Freshwater Research, 2016, 67, 113.	0.7	16
154	Overwintering tropical herbivores accelerate detritus production on temperate reefs. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192046.	1.2	16
155	Effects of human footprint and biophysical factors on the bodyâ€size structure of fished marine species. Conservation Biology, 2022, 36, .	2.4	16
156	Colonization of gastropods on subtidal reefs depends on density in adjacent habitats, not on disturbance regime. Journal of Molluscan Studies, 2009, 75, 27-33.	0.4	15
157	Rangeâ€extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Functional Ecology, 2020, 34, 2411-2421.	1.7	15
158	Turban snails as habitat for foliose algae: contrasting geographical patterns in species richness. Marine and Freshwater Research, 2010, 61, 1237.	0.7	15
159	Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance. PLoS ONE, 2011, 6, e20190.	1.1	15
160	Leveraging the blue economy to transform marine forest restoration. Journal of Phycology, 2022, 58, 198-207.	1.0	15
161	Another Decade of Marine Climate Change Experiments: Trends, Progress and Knowledge Gaps. Frontiers in Marine Science, 2021, 8, .	1.2	14
162	Distribution and Localised Effects of the Invasive Ascidian Didemnum perlucidum (Monniot 1983) in an Urban Estuary. PLoS ONE, 2016, 11, e0154201.	1.1	14

#	Article	IF	CITATIONS
163	Disturbance intensity, disturbance extent and ocean climate modulate kelp forest understory communities. Marine Ecology - Progress Series, 2020, 651, 57-69.	0.9	14
164	Persistent thermally driven shift in the functional trait structure of herbivorous fishes: Evidence of topâ€down control on the rebound potential of temperate seaweed forests?. Global Change Biology, 2022, 28, 2296-2311.	4.2	14
165	Large-scale facilitation of a sessile community by an invasive habitat-forming snail. Helgoland Marine Research, 2013, 67, 789-794.	1.3	13
166	A review of protocols for the experimental release of kelp (Laminariales) zoospores. Ecology and Evolution, 2019, 9, 8387-8398.	0.8	13
167	Resilience of a harvested gastropod, Turbo militaris, to marine heatwaves. Marine Environmental Research, 2019, 151, 104769.	1.1	13
168	Short-term in situ warming influences early development of sessile assemblages. Marine Ecology - Progress Series, 2012, 453, 129-136.	0.9	13
169	Persistence of seaweed forests in the anthropocene will depend on warming and marine heatwave profiles. Journal of Phycology, 2022, 58, 22-35.	1.0	13
170	Modulation of different kelp life stages by herbivory: compensatory growth versus population decimation. Marine Biology, 2017, 164, 1.	0.7	12
171	Genetic and morphological diversity in sympatric kelps with contrasting reproductive strategies. Aquatic Biology, 2018, 27, 65-73.	0.5	12
172	Loss of a globally unique kelp forest from Oman. Scientific Reports, 2022, 12, 5020.	1.6	12
173	On the generality of cascading habitat-formation. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20131994.	1.2	11
174	Niche and neutral assembly mechanisms contribute to latitudinal diversity gradients in reef fishes. Journal of Biogeography, 2021, 48, 2683-2698.	1.4	11
175	Embrace kelp forests in the coming decade. Science, 2021, 373, 863-863.	6.0	11
176	Spatial variation in juvenile and adult Ecklonia radiata (Laminariales) sporophytes. Aquatic Botany, 2009, 90, 93-95.	0.8	10
177	The Importance of Marine Research Infrastructures in Capturing Processes and Impacts of Extreme Events. Frontiers in Marine Science, 2021, 8, .	1.2	10
178	High herbivory despite high sediment loads on a fringing coral reef. Coral Reefs, 2022, 41, 161-173.	0.9	10
179	Probabilistic predictions using a groundwater model informed with airborne EM data. Advances in Water Resources, 2017, 103, 86-98.	1.7	9
180	A Regional Scale Hydrostratigraphy Generated from Geophysical Data of Varying Age, Type, and Quality. Water Resources Management, 2019, 33, 539-553.	1.9	9

#	Article	IF	CITATIONS
181	Scale of impact determines early post-disturbance assemblage structure in subtidalFucusbeds in the Baltic Sea (Bornholm, Denmark). European Journal of Phycology, 2006, 41, 105-113.	0.9	8
182	Population structure of the purple sea urchin <i>Heliocidaris erythrogramma</i> along a latitudinal gradient in south-west Australia. Journal of the Marine Biological Association of the United Kingdom, 2014, 94, 1033-1040.	0.4	8
183	Invasions by non-indigenous species. , 0, , 274-332.		8
184	The devil in the detail: harmful seaweeds are not harmful to everyone. Global Change Biology, 2015, 21, 1381-1382.	4.2	8
185	Persistence of tropical herbivores in temperate reefs constrains kelp resilience to cryptic habitats. Journal of Ecology, 2021, 109, 2081-2094.	1.9	8
186	Diversity and abundance of epibiota on invasive and native estuarine gastropods depend on substratum and salinity. Marine and Freshwater Research, 2015, 66, 1191.	0.7	7
187	Artificial light source selection in seaweed production: growth of seaweed and biosynthesis of photosynthetic pigments and soluble protein. PeerJ, 2021, 9, e11351.	0.9	7
188	Multicomponent groundwater transport with chemical equilibrium and kinetics: model development and evaluation. Hydrological Sciences Journal, 1998, 43, 299-317.	1.2	6
189	Misconceptions about analyses of Australian seaweed collections. Phycologia, 2014, 53, 215-220.	0.6	6
190	Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?. Frontiers in Marine Science, 2017, 4, .	1.2	6
191	Marine Biodiversity and Climate Change. , 2014, , 181-187.		6
192	Annual changes in abundance of non-indigenous marine benthos on a very large spatial scale. Aquatic Invasions, 2008, 3, 133-140.	0.6	6
193	Future trajectories of change for an Arctic deepâ€sea ecosystem connected to coastal kelp forests. Restoration Ecology, 2021, 29, e13327.	1.4	5
194	Fifteen years in a global warming hotspot: changes in subtidal mobile invertebrate communities. Marine Ecology - Progress Series, 2020, 656, 227-238.	0.9	5
195	Shared patterns of species turnover between seaweeds and seed plants break down at increasing distances from the sea. Ecology and Evolution, 2014, 4, 27-34.	0.8	4
196	Feeding preferences of range-shifting and native herbivorous fishes in temperate ecosystems. Marine Environmental Research, 2021, 172, 105508.	1.1	4
197	Threats to Ecosystem Engineering Macrophytes: Climate Change. , 2016, , 201-218.		3
198	A Glass Half Full: Solutions-Oriented Management under Climate Change. Trends in Ecology and Evolution, 2021, 36, 385-386.	4.2	3

#	Article	IF	CITATIONS
199	Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes. Oecologia, 2021, 196, 441-453.	0.9	3
200	Ecological Interactions between Marine Plants and Alien Species. , 2016, , 226-249.		3
201	Intergrading reef communities across discrete seaweed habitats in a temperate–tropical transition zone: Lessons for species reshuffling in a warming ocean. Ecology and Evolution, 2022, 12, e8538.	0.8	3
202	Maximization of fitness by phenological and phenotypic plasticity in range expanding rabbitfish (Siganidae). Journal of Animal Ecology, 2022, , .	1.3	3
203	How to quantify algal turf sediments and particulates on tropical and temperate reefs: An overview. Marine Environmental Research, 2022, 179, 105673.	1.1	3
204	Celebrating 25 years of temperate reef science. Marine and Freshwater Research, 2016, 67, i.	0.7	1
205	The mitochondrial and chloroplast genomes of the kelp, Ecklonia radiata. Aquatic Botany, 2022, 178, 103485.	0.8	1

The Past and Future Ecologies of Australasian Kelp Forests. , 2019, , 414-430.

0