
Zi-Tong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-Aryl diketopyrrolopyrrole derivatives towards organic optical and electronic materials. Chinese Chemical Letters, 2023, 34, 107687.	9.0	3
2	The Control of Intramolecular Through-Bond and Through-Space Coupling in Single-Molecule Junctions. CCS Chemistry, 2022, 4, 713-721.	7.8	17
3	Recent progress in smallâ€molecule donors for nonâ€fullerene allâ€smallâ€molecule organic solar cells. Nano Select, 2022, 3, 233-247.	3.7	17
4	Recent progress in organic fieldâ€effect transistorâ€based chem/bioâ€sensors. View, 2022, 3, .	5.3	31
5	Side-Chain Engineering of Conjugated Polymers for High-Performance Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2022, 13, 1131-1146.	4.6	29
6	Accurate Single-Molecule Kinetic Isotope Effects. Journal of the American Chemical Society, 2022, , .	13.7	8
7	Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
8	A Dual Functional Diketopyrrolopyrroleâ€Based Conjugated Polymer as Single Component Semiconducting Photoresist by Appending Azide Groups in the Side Chains. Advanced Science, 2022, 9, e2106087.	11.2	15
9	Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C ₆₀ and C ₇₀ . Chemistry - A European Journal, 2022, 28, .	3.3	7
10	Monoazadichalcogenasumanenes: Synthesis, Structures, and Ring Reconstruction via Atom Transfer under Acidic Conditions. Angewandte Chemie, 2022, 134, .	2.0	4
11	Vinylene Flanked Naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. Macromolecules, 2022, 55, 331-337.	4.8	2
12	Strain of Supramolecular Interactions in Single tacking Junctions. Angewandte Chemie, 2022, 134, .	2.0	4
13	Strain of Supramolecular Interactions in Single‣tacking Junctions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
14	Aggregation induced emission enhancement and chromism properties of a vinyl bridged naphthalene diimide dimer. Dyes and Pigments, 2022, 203, 110330.	3.7	3
15	Organic crystalline monolayers for ideal behaviours in organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 12057-12062.	5.5	3
16	Keep glowing and going: recent progress in diketopyrrolopyrrole synthesis towards organic optoelectronic materials. Organic Chemistry Frontiers, 2021, 8, 4560-4581.	4.5	31
17	Transforming electron-rich hetero-buckybowls into electron-deficient polycycles. Organic Chemistry Frontiers, 2021, 8, 4767-4776.	4.5	9
18	Electrostatic gating of single-molecule junctions based on the STM-BJ technique. Nanoscale, 2021, 13, 7600-7605.	5.6	16

#	Article	IF	CITATIONS
19	Subtle Side Chain Triggers Unexpected Two-Channel Charge Transport Property Enabling 80% Fill Factors and Efficient Thick-Film Organic Photovoltaics. Innovation(China), 2021, 2, 100090.	9.1	40
20	Dynamics in Electronically Excited States of Diketopyrrolopyrrole–Thiophene Conjugated Polymer Thin Films. Journal of Physical Chemistry C, 2021, 125, 5572-5580.	3.1	4
21	New Synthetic Approaches to <i>N</i> â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials. Angewandte Chemie - International Edition, 2021, 60, 10700-10708.	13.8	33
22	New Synthetic Approaches to N â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials. Angewandte Chemie, 2021, 133, 10795-10803.	2.0	3
23	Innentitelbild: New Synthetic Approaches to <i>N</i> â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials (Angew. Chem. 19/2021). Angewandte Chemie, 2021, 133, 10526-10526.	2.0	0
24	Sub-5 nm single crystalline organic p–n heterojunctions. Nature Communications, 2021, 12, 2774.	12.8	39
25	Simultaneous Incorporation of Two Types of Azoâ€Groups in the Side Chains of a Conjugated D–A Polymer for Logic Control of the Semiconducting Performance by Light Irradiation. Advanced Materials, 2021, 33, e2005613.	21.0	23
26	Electric field–catalyzed single-molecule Diels-Alder reaction dynamics. Science Advances, 2021, 7, .	10.3	51
27	Singleâ€Molecule Chargeâ€Transport Modulation Induced by Steric Effects of Side Alkyl Chains. ChemPhysChem, 2021, 22, 2573-2578.	2.1	5
28	Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives. ACS Sensors, 2021, 6, 470-476.	7.8	10
29	Efficient Construction of Near-Infrared Absorption Donor–Acceptor Copolymers with and without Pt(II)-Incorporation toward Broadband Nonlinear Optical Materials. ACS Applied Materials & Interfaces, 2020, 12, 2944-2951.	8.0	29
30	Dicyclohepta[<i>ijkl</i> , <i>uvwx</i>]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Nonâ€benzenoid Nanographene. Angewandte Chemie, 2020, 132, 3557-3561.	2.0	33
31	Dicyclohepta[<i>ijkl</i> , <i>uvwx</i>]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Nonâ€benzenoid Nanographene. Angewandte Chemie - International Edition, 2020, 59, 3529-3533.	13.8	82
32	Structureâ€Independent Conductance of Thiopheneâ€Based Singleâ€Stacking Junctions. Angewandte Chemie, 2020, 132, 3306-3312.	2.0	10
33	Structureâ€Independent Conductance of Thiopheneâ€Based Singleâ€Stacking Junctions. Angewandte Chemie - International Edition, 2020, 59, 3280-3286.	13.8	58
34	Unconventional Transformation of the Two Carbonyl Groups in 4,4′,5,5′-Tetrachloro-10 <i>H</i> ,10′ <i>H</i> -[9,9′-bianthracenylidene]-10,10′-dione into Diallenes Letters, 2020, 22, 8629-8633.	. Grg anic	2
35	Diketopyrrolopyrrole based donor–acceptor π-conjugated copolymers with near-infrared absorption for 532 and 1064 nm nonlinear optical materials. Journal of Materials Chemistry C, 2020, 8, 12993-13000.	5.5	23
36	Selenopheneâ€Flanked Diketopyrrolopyrrole Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chinese Journal of Chemistry, 2020, 38, 1075-1080.	4.9	10

#	Article	IF	CITATIONS
37	A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Fieldâ€Effect Transistors Optically Tunable by Near Infraâ€Red Light. Angewandte Chemie - International Edition, 2020, 59, 13844-13851.	13.8	21
38	A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Fieldâ€Effect Transistors Optically Tunable by Near Infraâ€Red Light. Angewandte Chemie, 2020, 132, 13948-13955.	2.0	6
39	Halfâ€Fused Diketopyrrolopyrroleâ€Based Conjugated Donor–Acceptor Polymer for Ambipolar Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 1910235.	14.9	39
40	New fused conjugated molecules with fused thiophene and pyran units for organic electronic materials. RSC Advances, 2020, 10, 12378-12383.	3.6	4
41	Nanococktail Based on AlEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics, 2020, 10, 2260-2272.	10.0	32
42	Multi-Stimuli-Responsive Field-Effect Transistor with Conjugated Polymer Entailing Spiropyran in the Side Chains. CCS Chemistry, 2020, 2, 632-641.	7.8	12
43	Multi-Stimuli-Responsive Field-Effect Transistor with Conjugated Polymer Entailing Spiropyran in the Side Chains. CCS Chemistry, 2020, 2, 632-641.	7.8	4
44	Semiconducting Nanocomposite with AlEgenâ€Triggered Enhanced Photoluminescence and Photodegradation for Dualâ€Modality Tumor Imaging and Therapy. Advanced Functional Materials, 2019, 29, 1903733.	14.9	22
45	Selenium‣ubstituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie - International Edition, 2019, 58, 18994-18999.	13.8	136
46	Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials. Angewandte Chemie, 2019, 131, 19170-19175.	2.0	18
47	Fieldâ€Effect Transistors: Photoâ€/Thermalâ€Responsive Fieldâ€Effect Transistor upon Blending Polymeric Semiconductor with Hexaarylbiimidazole toward Photonically Programmable and Thermally Erasable Memory Device (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970315.	21.0	2
48	Photoâ€/Thermalâ€Responsive Fieldâ€Effect Transistor upon Blending Polymeric Semiconductor with Hexaarylbiimidazole toward Photonically Programmable and Thermally Erasable Memory Device. Advanced Materials, 2019, 31, e1902576.	21.0	36
49	The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. Advanced Materials, 2019, 31, e1903104.	21.0	153
50	Strong Near-Infrared Solid Emission and Enhanced N-Type Mobility for Poly(naphthalene Diimide) Vinylene by a Random Polymerization Strategy. Macromolecules, 2019, 52, 8332-8338.	4.8	8
51	Optically Tunable Field Effect Transistors with Conjugated Polymer Entailing Azobenzene Groups in the Side Chains. Advanced Functional Materials, 2019, 29, 1807176.	14.9	46
52	Conjugated Semiconducting Polymer with Thymine Groups in the Side Chains: Charge Mobility Enhancement and Application for Selective Field-Effect Transistor Sensors toward CO and H ₂ S. Chemistry of Materials, 2019, 31, 1800-1807.	6.7	62
53	Improving the Electronic Transporting Property for Flexible Field-Effect Transistors with Naphthalene Diimide-Based Conjugated Polymer through Branching/Linear Side-Chain Engineering Strategy. ACS Applied Materials & Interfaces, 2019, 11, 15837-15844.	8.0	32
54	Lightâ€Driven Reversible Intermolecular Proton Transfer at Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2019, 58, 3829-3833.	13.8	60

#	Article	IF	CITATIONS
55	Lightâ€Driven Reversible Intermolecular Proton Transfer at Singleâ€Molecule Junctions. Angewandte Chemie, 2019, 131, 3869-3873.	2.0	15
56	Synthesis of Heterocyclic Core-Expanded Bis-Naphthalene Tetracarboxylic Diimides. Organic Letters, 2019, 21, 9734-9737.	4.6	13
57	Titelbild: Seleniumâ€Substituted Diketopyrrolopyrrole Polymer for Highâ€Performance pâ€Type Organic Thermoelectric Materials (Angew. Chem. 52/2019). Angewandte Chemie, 2019, 131, 18893-18893.	2.0	1
58	An Aâ€Dâ€A′â€Dâ€A Conjugated Molecule Entailing Diazapentalene Unit for an nâ€Type Organic Semicondu Chemistry - an Asian Journal, 2019, 14, 1712-1716.	ctor. 3.3	1
59	Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit. Chemistry of Materials, 2018, 30, 3090-3100.	6.7	107
60	Highly Sensitive Fieldâ€Effect Ammonia/Amine Sensors with Low Driving Voltage Based on Low Bandgap Polymers. Advanced Electronic Materials, 2018, 4, 1800025.	5.1	18
61	A vinyl flanked difluorobenzothiadiazole–dithiophene conjugated polymer for high performance organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 1774-1779.	5.5	9
62	Direct single-molecule dynamic detection of chemical reactions. Science Advances, 2018, 4, eaar2177.	10.3	78
63	Pechmann Dyeâ€Based Molecules Containing Fluorobenzene Moieties for Ambipolar Organic Semiconductors. Asian Journal of Organic Chemistry, 2018, 7, 592-597.	2.7	9
64	Conjugated D–A terpolymers for organic field-effect transistors and solar cells. Polymer Journal, 2018, 50, 21-31.	2.7	23
65	Side-chain effect of perylene diimide tetramer-based non-fullerene acceptors for improving the performance of organic solar cells. Materials Chemistry Frontiers, 2018, 2, 2104-2108.	5.9	13
66	A Facile Approach to Improve Interchain Packing Order and Charge Mobilities by Selfâ€Assembly of Conjugated Polymers on Water. Advanced Science, 2018, 5, 1801497.	11.2	35
67	Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality. Accounts of Chemical Research, 2018, 51, 1422-1432.	15.6	119
68	Improving Ambipolar Semiconducting Properties of Thiazole-Flanked Diketopyrrolopyrrole-Based Terpolymers by Incorporating Urea Groups in the Side-Chains. Macromolecules, 2018, 51, 6003-6010.	4.8	30
69	Dibenzothiopheneâ€ <i>S</i> , <i>S</i> â€Dioxideâ€Based Conjugated Polymers: Highly Efficient Photocatalyts for Hydrogen Production from Water under Visible Light. Small, 2018, 14, e1801839.	10.0	96
70	Vinylene spacer effects of benzothiadiazole–quarterthiophene based conjugated polymers on transistor mobilities. New Journal of Chemistry, 2018, 42, 15372-15378.	2.8	5
71	Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions. Nano Letters, 2017, 17, 856-861.	9.1	76
72	A New Benzodithiopheneâ€Based Cruciform Electronâ€Donor–Electronâ€Acceptor Molecule with Ambipolar/Photoresponsive Semiconducting and Redâ€Lightâ€Emissive Properties. Asian Journal of Organic Chemistry, 2017, 6, 1277-1284.	2.7	4

#	Article	IF	CITATIONS
73	Diketopyrrolopyrroleâ€Based Conjugated Polymer Entailing Triethylene Glycols as Side Chains with High Thinâ€Film Charge Mobility without Postâ€Treatments. Advanced Science, 2017, 4, 1700048.	11.2	58
74	Diketopyrrolopyrroleâ€Based Semiconducting Polymer with Both Hydrophobic Alkyl and Hydrophilic Tetraethylene Glycol Chains for Monolayer Transistor and Sensing Application. Advanced Electronic Materials, 2017, 3, 1700120.	5.1	28
75	Poly(naphthalene diimide) vinylene: solid state red emission and semiconducting properties for transistors. Chemical Communications, 2017, 53, 4934-4937.	4.1	21
76	1,6- and 2,7- <i>trans</i> -β-Styryl Substituted Pyrenes Exhibiting Both Emissive and Semiconducting Properties in the Solid State. Chemistry of Materials, 2017, 29, 3580-3588.	6.7	63
77	Charge mobility enhancement for diketopyrrolopyrrole-based conjugated polymers by partial replacement of branching alkyl chains with linear ones. Materials Chemistry Frontiers, 2017, 1, 2547-2553.	5.9	39
78	Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chemical Science, 2017, 8, 7505-7509.	7.4	58
79	Multi-vinyl linked benzothiadiazole conjugated polymers: high performance, low crystalline material for transistors. Chemical Communications, 2017, 53, 8176-8179.	4.1	8
80	Excitation Energy Transfer in <i>meta</i> â€Substituted Phenylacetylene Multibranched Chromophores. Chemistry - an Asian Journal, 2016, 11, 2741-2748.	3.3	10
81	Thieno[3,4â€c]Pyrroleâ€4,6â€Dione and Dithiopheneâ€Based Conjugated Polymer for Organic Field Effect Transistors: High Mobility Induced by Synergic Effect of Hâ€Bond and Vinyl Linkage. Macromolecular Rapid Communications, 2016, 37, 1357-1363.	3.9	7
82	Conjugated donor–acceptor terpolymers entailing the Pechmann dye and dithienyl-diketopyrrolopyrrole as co-electron acceptors: tuning HOMO/LUMO energies and photovoltaic performances. Polymer Chemistry, 2016, 7, 3838-3847.	3.9	14
83	Conjugated terpolymers synthesized by incorporating anthracene units into the backbones of the diketopyrrolopyrrole-based polymers as electron donors for photovoltaic cells. Polymer Chemistry, 2016, 7, 6798-6804.	3.9	5
84	Conjugated Donor–Acceptor Polymers Entailing Pechmann Dye-Derived Acceptor with Siloxane-Terminated Side Chains Exhibiting Balanced Ambipolar Semiconducting Behavior. Macromolecules, 2016, 49, 5857-5865.	4.8	34
85	Conjugated Random Donor–Acceptor Copolymers of [1]Benzothieno[3,2- <i>b</i>]benzothiophene and Diketopyrrolopyrrole Units for High Performance Polymeric Semiconductor Applications. Macromolecules, 2016, 49, 6334-6342.	4.8	30
86	Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive. Science Advances, 2016, 2, e1600076.	10.3	139
87	The adjustment of bandgap and coplanarity of diketopyrrolopyrrole-based copolymers through fine-tuning of the conjugated backbones and applications in thin film field effect transistors. Journal of Materials Chemistry C, 2016, 4, 9359-9365.	5.5	11
88	Recent developments of di-amide/imide-containing small molecular non-fullerene acceptors for organic solar cells. Chinese Chemical Letters, 2016, 27, 1283-1292.	9.0	19
89	Macromol. Rapid Commun. 16/2016. Macromolecular Rapid Communications, 2016, 37, 1384-1384.	3.9	0
90	Molecular Materials That Can Both Emit Light and Conduct Charges: Strategies and Perspectives. Chemistry - A European Journal, 2016, 22, 462-471.	3.3	43

#	Article	IF	CITATIONS
91	New ï€-conjugated polymers as acceptors designed for all polymer solar cells based on imide/amide-derivatives. Journal of Materials Chemistry C, 2016, 4, 185-192.	5.5	39
92	Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole–Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding. Journal of the American Chemical Society, 2016, 138, 173-185.	13.7	262
93	Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable <i>tert</i> Butoxy Groups in the Side Chains. ACS Applied Materials & Interfaces, 2016, 8, 3635-3643.	8.0	107
94	A fluorescent turn-on low dose detection of gamma-radiation based on aggregation-induced emission. Chemical Communications, 2015, 51, 3892-3895.	4.1	51
95	Modulating carrier transfer ability—linker effect on thieno[3,4-c]pyrrole-4,6-dione based conjugated polymers. RSC Advances, 2015, 5, 55619-55624.	3.6	16
96	New conjugated molecules with four DPP (diketopyrrolopyrrole) moieties linked by [2,2]paracyclophane as electron acceptors for organic photovoltaic cells. New Journal of Chemistry, 2015, 39, 6421-6427.	2.8	7
97	Tuning the Semiconducting Behaviors of New Alternating Dithienyldiketopyrrolopyrrole–Azulene Conjugated Polymers by Varying the Linking Positions of Azulene. Macromolecules, 2015, 48, 2039-2047.	4.8	76
98	A Cruciform Electron Donor–Acceptor Semiconductor with Solidâ€State Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H ₂ S Gas. Advanced Functional Materials, 2014, 24, 4250-4258.	14.9	96
99	New Organic Semiconductors with Imide/Amideâ€Containing Molecular Systems. Advanced Materials, 2014, 26, 6965-6977.	21.0	183
100	New Conjugated Molecules with Two and Three Dithienyldiketopyrrolopyrrole (DPP) Moieties Substituted at <i>meta</i> Positions of Benzene toward p―and nâ€īype Organic Photovoltaic Materials. Chemistry - an Asian Journal, 2014, 9, 1570-1578.	3.3	18
101	Extended Conjugated Donor–Acceptor Molecules with <i>E</i> â€(1,2â€Difluorovinyl) and Diketopyrrolopyrrole (DPP) Moieties toward Highâ€Performance Ambipolar Organic Semiconductors. Chemistry - an Asian Journal, 2014, 9, 1068-1075.	3.3	29
102	Alternating Conjugated Electron Donor–Acceptor Polymers Entailing Pechmann Dye Framework as the Electron Acceptor Moieties for High Performance Organic Semiconductors with Tunable Characteristics. Macromolecules, 2014, 47, 2899-2906.	4.8	54
103	Conjugated electron donor–acceptor molecules with (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione for new organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 1149-1157.	5.5	7
104	Donor–Acceptor Molecules: A Cruciform Electron Donor–Acceptor Semiconductor with Solid‣tate Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H ₂ S Gas (Adv. Funct. Mater. 27/2014). Advanced Functional Materials, 2014, 24, 4376-4376.	14.9	1
105	New dithienyl-diketopyrrolopyrrole-based conjugated molecules entailing electron withdrawing moieties for organic ambipolar semiconductors and photovoltaic materials. Journal of Materials Chemistry C, 2014, 2, 10101-10109.	5.5	27
106	New conjugated molecular scaffolds based on [2,2]paracyclophane as electron acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50, 9939-9942.	4.1	40
107	Electronic tuning effects via cyano substitution of a fused tetrathiafulvalene–benzothiadiazole dyad for ambipolar transport properties. RSC Advances, 2014, 4, 2873-2878.	3.6	26
108	Ambipolar charge-transport property for the D–A complex with naphthalene diimide motif. Journal of Materials Chemistry C, 2014, 2, 2869-2876.	5.5	34

#	Article	IF	CITATIONS
109	Arylacetylene‧ubstituted Naphthalene Diimides with Dual Functions: Optical Waveguides and nâ€Type Semiconductors. Chemistry - an Asian Journal, 2014, 9, 3207-3214.	3.3	30
110	Ï€â€Extented Conjugated Polymers Entailing Pechmann Dye Moieties for Solutionâ€Processed Ambipolar Organic Semiconductors. Chinese Journal of Chemistry, 2014, 32, 788-796.	4.9	14
111	Alternating Electron Donor–Acceptor Conjugated Polymers Based on Modified Naphthalene Diimide Framework: The Large Enhancement of p-Type Semiconducting Performance upon Solvent Vapor Annealing. Macromolecules, 2013, 46, 5504-5511.	4.8	25
112	New core-expanded naphthalene diimides with different functional groups for air-stable solution-processed organic n-type semiconductors. New Journal of Chemistry, 2013, 37, 1720.	2.8	19
113	Solution-processed core-extended naphthalene diimides toward organic n-type and ambipolar semiconductors. Journal of Materials Chemistry C, 2013, 1, 2688.	5.5	29
114	Dithiazole-fused naphthalene diimides toward new n-type semiconductors. Journal of Materials Chemistry C, 2013, 1, 1087-1092.	5.5	48
115	New Donor–Acceptor–Donor Molecules with Pechmann Dye as the Core Moiety for Solution-Processed Good-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2013, 25, 471-478.	6.7	81
116	Extended π-Conjugated Molecules Derived from Naphthalene Diimides toward Organic Emissive and Semiconducting Materials. Journal of Organic Chemistry, 2013, 78, 2926-2934.	3.2	48
117	New alternating electron donor–acceptor conjugated polymers entailing (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione moieties. Polymer Chemistry, 2013, 4, 5283.	3.9	19
118	Thiepinâ€Fused Heteroacenes: Simple Synthesis, Unusual Structure, and Semiconductors with Less Anisotropic Behavior. Chemistry - A European Journal, 2013, 19, 14573-14580.	3.3	14
119	Responsive Gels with the Polymer Containing Alternating Naphthalene Diimide and Fluorinated Alkyl Chains: Gel Formation and Responsiveness as Well as Electrical Conductivity of Polymer Thin Films. Chinese Journal of Chemistry, 2012, 30, 1453-1458.	4.9	6
120	A facile and convenient fluorescence detection of gamma-ray radiation based on the aggregation-induced emission. Journal of Materials Chemistry, 2011, 21, 14487.	6.7	55
121	Synthesis and chiroptical properties of chiral binaphthylâ€containing polyfluorene derivatives. Journal of Polymer Science Part A, 2011, 49, 680-689.	2.3	5
122	Synthesis, optical properties, and spectral stability of chiral dendronized binaphthyl ontaining polyfluorene derivatives. Journal of Polymer Science Part A, 2008, 46, 886-896.	2.3	13
123	The Synthesis of Dendritic β-Diketonato Ligands and Their Europium Complexes. European Journal of Organic Chemistry, 2007, 2007, 508-516.	2.4	11
124	A Click Approach to Chiralâ€Đendronized Polyfluorene Derivatives. Macromolecular Rapid Communications, 2007, 28, 2249-2255.	3.9	14