Anil Dangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7748301/publications.pdf

Version: 2024-02-01

623574 610775 26 723 14 24 h-index citations g-index papers 26 26 26 1049 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Acute murine cytomegalovirus disrupts established transplantation tolerance and causes recipient allo-sensitization. American Journal of Transplantation, 2021, 21, 515-524.	2.6	4
2	Rejection of xenogeneic porcine islets in humanized mice is characterized by graftâ€infiltrating Th17 cells and activated B cells. American Journal of Transplantation, 2020, 20, 1538-1550.	2.6	8
3	Murine cytomegalovirus dissemination but not reactivation in donor-positive/recipient-negative allogeneic kidney transplantation can be effectively prevented by transplant immune tolerance. Kidney International, 2020, 98, 147-158.	2.6	8
4	Donor apoptotic cell–based therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients. American Journal of Transplantation, 2020, 20, 2728-2739.	2.6	9
5	Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight, 2020, 5, .	2.3	30
6	Receptor tyrosine kinase MerTK suppresses an allogenic type I IFN response to promote transplant tolerance. American Journal of Transplantation, 2019, 19, 674-685.	2.6	24
7	Emerging approaches and technologies in transplantation: the potential game changers. Cellular and Molecular Immunology, 2019, 16, 334-342.	4.8	17
8	Murine CMV induces type 1 IFN that impairs differentiation of MDSCs critical for transplantation tolerance. Blood Advances, 2018, 2, 669-680.	2.5	23
9	Apoptotic cell-based therapies for promoting transplantation tolerance. Current Opinion in Organ Transplantation, 2018, 23, 552-558.	0.8	10
10	Differential Role of B Cells and IL-17 Versus IFN- \hat{l}^3 During Early and Late Rejection of Pig Islet Xenografts in Mice. Transplantation, 2017, 101, 1801-1810.	0.5	17
11	Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. Current Transplantation Reports, 2017, 4, 270-279.	0.9	4
12	Endotoxinâ€stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism. Journal of Cellular Physiology, 2016, 231, 94-105.	2.0	24
13	Liver-Specific Deletion of Augmenter of Liver Regeneration Accelerates Development of Steatohepatitis and Hepatocellular Carcinoma in Mice. Gastroenterology, 2015, 148, 379-391.e4.	0.6	85
14	Alcohol Exacerbates Liver Injury and Fibrosis in Mice With Liverâ€Specific Deficiency of Augmenter of Liver Regeneration. FASEB Journal, 2015, 29, 53.2.	0.2	0
15	A novel mouse model of depletion of stellate cells clarifies their role in ischemia/reperfusion- and endotoxin-induced acute liver injury. Journal of Hepatology, 2014, 60, 298-305.	1.8	98
16	Reply to: "Depletion of hepatic stellate cells: Have Kupffer cells lost their bad neighbor?― Journal of Hepatology, 2014, 61, 715-716.	1.8	0
17	The Transcriptomic Response of Rat Hepatic Stellate Cells to Endotoxin: Implications for Hepatic Inflammation and Immune Regulation. PLoS ONE, 2013, 8, e82159.	1.1	38
18	Hepatic Stellate Cells Undermine the Allostimulatory Function of Liver Myeloid Dendritic Cells via STAT3-Dependent Induction of IDO. Journal of Immunology, 2012, 189, 3848-3858.	0.4	60

#	Article	IF	CITATION
19	Selective Expansion of Allogeneic Regulatory T Cells by Hepatic Stellate Cells: Role of Endotoxin and Implications for Allograft Tolerance. Journal of Immunology, 2012, 188, 3667-3677.	0.4	70
20	Improvement in the antifilarial efficacy of doxycycline and rifampicin by combination therapy and drug delivery approach. Journal of Drug Targeting, 2010, 18, 343-350.	2.1	24
21	Tetracycline treatment targeting <i>Wolbachia</i> affects expression of an array of proteins in <i>Brugia malayi</i> parasite. Proteomics, 2009, 9, 4192-4208.	1.3	10
22	Adjuvanticity and protective immunity of Plasmodium yoelii nigeriensis blood-stage soluble antigens encapsulated in fusogenic liposome. Vaccine, 2009, 27, 473-482.	1.7	11
23	The n-hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice and exhibit antifilarial activity against human lymphatic filarid Brugia malayi. International Immunopharmacology, 2009, 9, 716-728.	1.7	53
24	Immunomodulator Effect of Picroliv and its Potential in Treatment Against Resistant Plasmodium yoelii (MDR) Infection in Mice. Pharmaceutical Research, 2008, 25, 2312-2319.	1.7	8
25	Vaccination with 73kDa recombinant heavy chain myosin generates high level of protection against Brugia malayi challenge in jird and mastomys models. Vaccine, 2008, 26, 5997-6005.	1.7	48
26	Chemical constituents and antifilarial activity of Lantana camara against human lymphatic filariid Brugia malayi and rodent filariid Acanthocheilonema viteae maintained in rodent hosts. Parasitology Research, 2006, 100, 439-448.	0.6	40